

uTaskerLM3SXXXX_Port.doc/0.01 Copyright © 2009 M.J.Butcher Consulting

���������	�
	��

�����	

µTasker Document

µTasker – LM3SXXXX GPIO and Simulator

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 2/9 3.08.2009

Table of Contents

1.� Introduction ...3�
2.� Checking whether a specific Luminary Device is supported...3�
3.� Adding a new Luminary Device ..5�
4.� Conclusion ..9�

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 3/9 3.08.2009

1. Introduction

The Luminary Micro devices have 8-bit ports, although not all bits in a port are always
physically connected to a pin.

The port bits can often be shared with a peripheral, whereby the newer TEMPEST CLASS
devices (4th generation / 2009, for example the LM3S9B90) have extended port multiplexing
to allow up to a maximum 16 alternative peripheral functions to be configured (the
LM3S9B90 actually uses up to 11 peripherals on a single pin)!

The range of devices in the Luminary portfolio is very impressive and more family members
are being introduced all of the time. This means that the µTasker project and its simulator
don’t necessarily support the exact type which has been chosen for a particular project; this
document explains the procedure for adding a new specific part to the project so that it can
be used accurately in the µTasker simulator.

2. Checking whether a specific Luminary Device is supported

The Luminary board type is selected in config.h, where there is a limited set of devices
already fully configured:

...
 //#define EK_LM3S6965 // LUMINARY EVAL board with Ethernet
 #define EK_LM3S8962 // LUMINARY EVAL board with Ethernet and CAN
 //#define EK_LM3S9B95 // LUMINARY EVAL board with Ethernet, USB-OTG, CAN

The first thing to do is to add the new board type (which can be a custom board with a
specific Luminary Micro device on it). Once the new board has been added to the list, its
major settings can be defined as shown in the following example of a new board type using
the LM3S2139 [with CAN interface] in 100 pin package. The fictive board is called
“MY_BOARD_1”.

 #define MY_BOARD_1 // board type used in the project
...
 #elif defined MY_BOARD_1 // specifics of this board and chip used
 #define DEVICE_WITHOUT_ETHERNET // disable Ethernet demo since not supported
 #define DEVICE_WITHOUT_USB // disable USB demo since not supported
 #define TARGET_HW "LM3S2139 CAN DEVICE"

The project define MY_BOARD_1 is now used to cause the board time to be displayed when
simulating and also to disable major parts of the µTasker demo project which cannot be run
on it due to the fact that it doesn’t have an Ethernet of USB interface.

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 4/9 3.08.2009

The same project-define can now be used to control further configurations; the first being the
chip type and characteristics in app_hw_lm3sxxxx.h:

#elif defined MY_BOARD_1
 #define _LM3S2139
 #define CRYSTAL_FREQ 8000000 // 8MHz crystal used
 #define PLL_OUTPUT_FREQ 25000000 // highest speed possible for this chip
 #define PART_CODE CODE_LM3S2139
 #define PIN_COUNT PIN_COUNT_100_PIN
 #define PACKAGE_TYPE PACKAGE_LQFP

Here the exact Luminary Micro device is selected, the oscillator used to drive it, the CPU
frequency to be used (obtained by the internal Phase-Lock-Loop) as well as package to be
mounted on the board.

The define can be further used in this file and others to configure anything which is board
specific, for example the port output used by the RUNLED if it is different to other board
configurations which the same code may be run on.

The chip type _LM3S2139 with its chip code CODE_LM3S2139 inform the hardware part of
the project, and also the µTasker simulator which parts is involved so that it can adapt itself
accordingly.

If the hardware part of the µTasker project already contains the configuration of the specific
device type this should be adequate for the project configuration at the hardware level and
application coding and simulation test can already begin. If the hardware type is not yet
available, this needs to be added as explained in the next chapter.

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 5/9 3.08.2009

3. Adding a new Luminary Device

Since the related device LM3S2110 (also an early SAND-STORM device) is already
available it can be used as a reference to adding the new LM3S2139. A search for the define
_LM3S2110 shows that it is used in LM3SXXXX.h, LM3SXXXX_ports.c and
WinSimMain.cpp:

LM3SXXXX.h: This file is used to add some more specific details about the hardware
capabilities of the part. First it declares the device code, whereby the following are the values
for use by the new part that we are defining. Some may already exist but the rest needs to be
added:

 #define CODE_LM3S2139 (0x84 << 16)

The device part number is a hard coded value which can be read from the Device
Identification 1 (DID1) register in the chip. This value should match with the value given in
the PARTNO field of this register according to its data sheet.

The part code is then used to specify the ports and peripherals available in the device

#elif PART_CODE == CODE_LM3S2139
 #define PART_DC0 (0x003f001f) // 64k FLASH, 16k SRAM
 #define PART_DC1 (0x010171bf)
 #define PART_DC2 (0x07071013)
 #define PART_DC3 (0xbf0f37c0)
 #define PART_DC4 (0x000000ff)
 #define PART_DC5 (0x00000040)
 #define PART_DC6 (0x00000000)
 #define PART_DC7 (0x00000000)
 #define PART_DC8 (0x00000000)

This list corresponds to the hard coded device capability registers in the chip (DC0 up to
DC8). Earlier chips do not have a full set of device capability registers (for example the part
in question has in fact DC0..DC4) but further register values should still be set with zeros.

The values are simply copied from the register contents according to the device’s data sheet,
whereby each bit, or bit combination informs about the device’s capabilities (eg. DC4 is
indicating that the chip has ports A to H present and bit 24 of DC1 is indicating that a CAN
module is build into the chip).

This is generally adequate information of the project to configure the peripherals to suit the
part.

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 6/9 3.08.2009

Some GPIOs default to JTAG use but the exact details may change between devices. The
default configuration after reset should be checked in the JTAG section of the part’s data
sheet. Because the GPIO PB7 does default to JTAG use in the LM3S2139 it is added to teh
list of parts:

// JTAG debug
//
#if defined _LM3S6965 || defined _LM3S8962 || defined _LM3S1968 ||
 defined _LM3S10X || defined _LM3S2110 || defined _LM3S2139
 #define DEVICE_HAS_JTAG_PB7
#endif

LM3SXXXX_ports.c: This file is responsible for displaying the GPIO pins and peripheral
functions in the simulator. Each parts needs to have a list of pins and functions (strings) but
some can share settings when they are identical of very similar (with a few specific defines to
tune the model). In the LM3S2139 the differences to the existing LM3S2110 are quite large
and so it was decided to add a new port configuration header specifically for the new chip.

#elif defined _LM3S2110
 #include "LM3S2110_port.h"
#elif defined _LM3S2139
 #include "LM3S2139_port.h"

The content of the new LM3S2139_port.h (which can also be added to the simulator
project if desired) can be copied from an existing similar device. The parts with only two
peripheral functions are quite simple to configure and consist or two parts:

The first part is a list of the GPIO pin numbers and peripheral functions:

static const char *cPinNumber[PORTS_AVAILABLE][PORT_WIDTH] = {
 // PORT A (0..7)
 { "26 {PA0/U0Rx}", "27 {PA1/U0Tx}", "28 {PA2/SSI0Clk}", "29 {PA3/SSI0Fss}", "30 {PA4/SSI0Rx}", "31
{PA5/SSI0Tx}", "34 {PA6/CCP1}", "35 {PA7/CCP4}"},
 // PORT B (0..7)
 { "66 {PB0/CCP0}", "67 {PB1/CCP2}", "70 {PB2/I2C0SCL}", "71 {PB3/I2C0SDA}", "92 {PB4/C0-}", "91
{PB5/C1-}", "90 {PB6/C0+}", "89 {PB7/TRST}"},
 // PORT C (0..7)
 { "80 {PC0/TCK/SWCLK}", "79 {PC1/TMS/SWDIO}", "78 {PC2/TDI}", "77 {PC3/TDO/SWO}", "25 {PC4/CCP5}", "24
{PC5/C1+}", "23 {PC6/C2+}", "22 {PC7/C2-}"},
 // PORT D (0..7)
 { "10 {PD0/CAN0Rx}", "11 {PD1/CAN0Tx}", "12 {PD2/U1Rx}", "13 {PD3/U1Tx}", "95 {PD4/CCP3}", "96 {PD5}",
"99 {PD6}", "100 {PD7/C0o}"},
 // PORT E (0..7)
 { "72 {PE0}", "73 {PE1}", "74 {PE2}", "75 {PE3}", "NA", "NA", "NA", "NA"},
 // PORT F (0..7)
 { "47 {PF0}", "61 {PF1}", "60 {PF2}", "59 {PF3}", "58 {PF4}", "46 {PF5}", "43 {PF6}", "42 {PF7}"},
 // PORT G (0..7)
 { "19 {PG0}", "18 {PG1}", "17 {PG2}", "16 {PG3}", "41 {PG4}", "40 {PG5}", "37 {PG6}", "36 {PG7}"},
 // PORT H (0..7)
 { "86 {PH0}", "85 {PH1}", "84 {PH2}", "83 {PH3}", "NA", "NA", "NA", "NA"},
 // ADC (0..3)
 { "1 {AIN0}", "2 {AIN1}", "5 {AIN2}", "6 {AIN3}", "NA", "NA", "NA", "NA"},
};

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 7/9 3.08.2009

When the user hovers the mouse over the port in the simulator the corresponding string will
be displayed.

The second part is a list of specific strings to be displayed when peripheral functions are
actually programmed.

static const char *cPer[PORTS_AVAILABLE][PORT_WIDTH][2] = {
 {
 // Q Periph.
 { "Q", "U0Rx" }, // PORT A
 { "Q", "U0Tx" },
 { "Q", "SSI0Clk" },
 { "Q", "SSI0Fss" },
 { "Q", "SSI0Rx" },
 { "Q", "SSI0Tx" },
 { "Q", "CCP1" },
 { "Q", "CCP4" }
 },
...
 {
 // Q Periph.
 { "Q", "CAN0Rx" }, // PORT D
 { "Q", "CAN0Tx" },
 { "Q", "U1Rx" },
 { "Q", "U1Tx" },
 { "Q", "CCP3" },
 { "Q", "invalid" },
 { "Q", "invalid" },
 { "Q", "C0o" }
 },
...

Although only the entries for ports A and D are shown, there is an entry for each port in the
device. Notice that any GPIOs without peripheral functions are entered as “invalid” so that
this can be displayed in case the embedded software actually sets them incorrectly.

The details about the GPIO, its pin number and its multiplexed function(s) can be taken from
the corresponding “GPIO Pins and Alternative Functions” take in the part’s data sheet.

WinSimMain.cpp: This code is responsible for displaying ports only where they exist. By
masking out ports that are not available, the port simulator only displays existing ports. This
is a bit trickier to program, involving manipulating the value of ulPortMask for each port
being displayed in the routine static void fnDisplayPorts(HDC hdc). Usually only an
extra define or two are required to tune it up for the device, although some debugging may
be required to get it exactly right – in this case orientation on an existing chip is useful.

In the case of the LM3S2139, ports A, B, C, E, F and G are full width (8 bit) and so need no
masking. Ports E and H are half-width (0..3 available) and so are masked with 0xf0 when
they are drawn.

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 8/9 3.08.2009

4. Configuring Port Initial Input States

In some hardware designs external pull-up or pull-down resistors are connected to the
device. In order to allow the simulator to set the correct input state out of reset, respecting
these external voltages or components the values can be modified in app_hw_lm3sxxxx.h

#define PORTA_DEFAULT_INPUT 0xffffffff // initial port input states for simulator
#define PORTB_DEFAULT_INPUT 0xffffffff
#define PORTC_DEFAULT_INPUT 0xffffffff
#define PORTD_DEFAULT_INPUT 0xffffffff
#define PORTE_DEFAULT_INPUT 0xffffffff
#define PORTF_DEFAULT_INPUT 0xffffffff
#define PORTG_DEFAULT_INPUT 0xffffffff
#define PORTH_DEFAULT_INPUT 0xfffffff3
#define PORTJ_DEFAULT_INPUT 0xffffffff

In this example all GPIOs have pull-ups (or input voltages) equivalent to a logic ‘1’ apart from
two inputs at port H (PH2 and PH3).

The simulator finally running the newly added device, with these two inputs pulled down out
of reset now looks like this:

www.uTasker.com µTasker – LM3SXXXX GPIO and Simulator V1.3

uTaskerLM3SXXXX_Port.doc/0.01 9/9 3.08.2009

5. Conclusion

This document is in progress and has not yet been officially released.

Modifications:

V0.01 3.8.2009: - Initial draft – work in progress. Not officially released.

