

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 1/14 5.1.2007

Introduction

µTasker is an operating system designed especially for embedded applications where a tight
control over resources is desired along with a high level of user comfort to produce efficient
and highly deterministic code.

The operating system is integrated with TCP/IP stack and important embedded Internet
services along side device drivers and system specific project resources.

µTasker and its environment are essentially not hardware specific and can thus be moved
between processor platforms with great ease and efficiency.

However the µTasker project setups are very hardware specific since they offer an optimal
pre-defined (or a choice of pre-defined) configurations, taking it out of the league of “board
support packages (BSP)” to a complete “project support package (PSP)”, a feature enabling
projects to be greatly accelerated.

This document discusses the implementation and use of the µTasker file system – known as
µFileSystem. This document is valid for µTasker releases from V1.2.008 but is also suitable
as an introduction for older releases.

First things first

The µFileSystem is rather special. It was designed to enable such services as FTP, HTTP
and parameter support to be integrated into embedded systems with a minimum amount of
resources but with a useable level of comfort and flexibility. It operates in internal FLASH -
either in linear or paged systems – and in external SPI EEPROMs. It can in addition be
configured to work in small memory environments up to 64k (file system size and individual
file sizes) or larger memory environments (file system and/or individual files of larger that
64k).

The µFileSystem was not designed to be a copy of other file systems, so don’t be
disappointed when you find it is not FAT32 conform. This is not a goal and also not
necessarily a benefit in a small embedded system, so if you need that then please check out
something like embedded Linux – it is free but will need rather more that a couple of
kilobytes code space…

You will however find that it is very easy to use, reliable and all that is usually needed for the
more important higher level tasks and protocols in real-world projects based on the
supported devices.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 2/14 5.1.2007

Configuring µFileSystem

There are several parameters which need to be configured so that the µFileSystem operates
with size constraints suiting your project. Such things are:

• The structure of the FLASH within the device (its granularity) – a SPI EEPROM
doesn’t have the save restrictions but uses an emulation technique where this
parameter is also specified.

• The block size of the files which you want to use in your project. (This can not be
smaller that the FLASH granularity).

• The number of files which the file system should support (equivalent to its total size).

• The size of parameters which should also be saved within the file system and
whether there should be a swap block.

• The maximum single file size within the file system (basically whether smaller than
64k or not).

• Whether the total file system space is larger than 64k or not.

Some parameters are limited by the physical properties of the devices used and so are
predefined and not real user parameters in this sense.

Before going in to details about each of these parameters, let’s start with a graphical
representation of a typical µFileSystem in the internal FLASH of a small device.

���������	
���
�

���������	
���� �

� ���� � �� �� �

���� � �� �� � � � ��� �

� ���� � �� �� � � � �� �� �

� �� � � �� � � � ��� �

� �� � � �� � � � ��� � � �
 	� �!��" �� �# !	$ %

� ���� � �� �� � � � � & '

��& (�� � ���� � ��� �

� !��)*)

� !��)+)

� !��),)

� !��)-)

� !��).)

� !��)/)

� !��)0)

� !��)1)

� !��)2)

� !��)3)

� !��)�)

������ (� �& 4 ��� �� �

Typical µFileSystem block positioned in the on-chip FLASH of a device

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 3/14 5.1.2007

Here is an example configuration of the µFileSystem in the hardware configuration file (eg.
app_hw_sam7x.h)
#define uFILE_START 0x118000 // FLASH location at 96k start

#define SINGLE_FILE_SIZE (4*FLASH_GRANULARITY) // each file a multiple of 1k

#define FILE_SYSTEM_SIZE (32*SINGLE_FILE_SIZE) // 32k reserved for file system
(including parameter blocks)

It can be seen that the start of the block can be set to a fixed address, which must obviously
be in the real FLASH address range. The FLASH granularity is defined by the device used
(here 256 byte granularity – or FLASH sector size [smallest block which can be individually
erased] is assumed and the SINGLE_FILE_SIZE is set 4 times larger to achieve 1k file
blocks. The FLASH granularity is usually a constant defined by the chip used – see the
header file belonging to the hardware device, eg. \Hardware\SAM7X\sam7x.h

The complete size of the FLASH memory used by the file system is defined as 32k, although
this includes also any parameter blocks which may be used. These are explained towards
the end of the document in more detail, but we will assume here that 1k space is reserved for
them (always at the beginning of the file system space). This will thus result in space for 31
files of 1k size, or correspondingly less when using multiples of 1k.

There are a few simple rules involved, as follows:

• File locations are specified by names, which are essentially one number or letter (or
the first number or letter in a longer name). The file locations count from ‘0’ to ‘9’, and
then from ‘a’ to ‘z’, then from ‘A’ to ‘Z’. This gives a maximum of 62 individual files in
all. The actual amount useable is given by the total size defined and the
SINGLE_FILE_SIZE used.

• A file smaller that SINGLE_FILE_SIZE occupies still SINGLE_FILE_SIZE space in
the FLASH, where SINGLE_FILE_SIZE can be made up of more than one FLASH
sector (FLASH_GRANULARITY).

• A file larger than SINGLE_FILE_SIZE occupies as many SINGLE_FILE_SIZE blocks
as necessary to fit in to the file system.

• The files system is flat, meaning that it doesn’t support directories.

• When copying files to the file system (for example via FTP) only the first letter is
observed but certain extensions can be optionally respected. Te following are
examples of valid names: MyFile.txt; MyFile.TXT; MyFile.001.txt [This file will be
copied to the ‘M’ space in the file system and it will be understood as a text file] {Note
that myFile.txt uses a different case and so is positioned at another address – it is not
the same file!}

From these first rules it is clear that the location of a file in the µFileSystem is directly defined
by its name. It also becomes clear that the user must thus know which files are to be saved
so that they actually fit (this can be controlled by the names given to the files to be saved).
For example, it is not possible to write a file requiring more than one file block to the last
block in the file system – it will just not fit.

The µFileSystem interface routines coordinate reading files and writing them and also
handles the following cases appropriately, giving the next important rule:

• If a file is written to a file block which is already occupied, the new file takes
preference. This means that the existing file will first be deleted from all blocks with it
may occupy.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 4/14 5.1.2007

Now this may sound quite strange at first but as I said before, the µFileSystem is not
designed to be a copy other file systems, but designed to allow useful things to be performed
in a very efficient manor. The application software designer is however involved a little since
he/she must in fact also design the use of the available file system space.

The µTasker demo project is delivered with web pages which are loaded by FTP. Check out
the names of the files to see where they are located. Check out the size of the files and you
will see that these also dictate the names of the web pages, since they must fit without
clobbering existing ones when loaded (see last but one rule above). But it does work and for
such tasks this system is very useable.

See also the following folder in the µTasker demo project
\Applications\uTaskerV1.3\WebPages\WebPagesHWType\FileSystem

It contains a word document used as a template for designing the positioning of files within
the file system for the project and can be used as a template for further work. It should also
be easily understandably now after this introduction.

Before moving to more details about how the files are built up and how to use the access
routines, it is important to quickly mention two typedefs in the project. These are found in
types.h [belonging to the application] and the two which interest us here are
MAX_FILE_LENGTH and MAX_FILE_SYSTEM_OFFSET.

These control the use of variables (basically unsigned short and unsigned long
types) which are used within the routines controlling the files. The value unsigned short
restricts values from 0x0000 to 0xffff (64k) and so also limits the size of the file system and
file offsets within. If you require a file system length of more than 64k it is necessary to
redefine the typedef for MAX_FILE_SYSTEM_OFFSET to be unsigned long so that this will
work properly. This will allow a larger file system length and individual files to 64k in length. If
also individual files are required to be longer than 64k, then also MAX_FILE_LENGTH should
be specified to be an unsigned long.

Here’s a table for clarity:

 MAX_FILE_SYSTEM_OFFSET MAX_FILE_LENGTH

File system of less
that 64k

typedef unsigned short typedef unsigned short

File system larger
than 64k but
individual files
smaller than 64k

typedef unsigned long typedef unsigned short

File system larger
than 64k AND
individual files larger
than 64k

typedef unsigned long typedef unsigned long

Of course all projects could use unsigned long typedefs and no one would have to
decide, but this is of course a waste of resources in systems where it is not necessary,
making the code also less efficient than it could be as a 16 bit device may have to mess
around with 32 bit words for no real reason at all. So best to be able to tune it…the demo
project is set up to suit the particular target used and so may set the most common settings
for that device.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 5/14 5.1.2007

File contents

The individual files within the system are copied and read from fixed locations which are
referenced by file name. This means that there doesn’t have to be any central file
management keeping track of where they are.

The files themselves do however have some characteristics otherwise it would not be
possible to know whether they are valid and how long their contents actually are.

The µFileSystem doesn’t try to do anything about file access rights or file date and times – if
an application requires such support (which is rather unlikely in most small embedded
systems) this will have to be handled somewhere else – like in the application.

The result of this simplification is that also the files themselves require very little information
saved. The files are built up with a very short header made up of the file length (which will be
either 2 bytes or 4 bytes in length depending on the setting of MAX_FILE_LENGTH (see
above). This also operates as a file validity check since blank FLASH will return a file length
of 0xffff or 0xffffffff, which are interpreted as zero length. This also means that there is in fact
an additional restriction to the real file content length since space for the header is required,
but this is only of the order of 2 or 4 bytes here.

It is often also interesting to know what type of data has been saved in a file (*.txt, *.GIF,
*.JPG etc.) and this may also be optionally saved by setting the define
SUPPORT_MIME_IDENTIFIER in config.h

When using SUPPORT_MIME_IDENTIFIER the FTP server will for example display the file
extensions and the HTTP server will better be able to work with images, CSS and Java etc.
since it will know not to try to interpret the wrong types of data. Its use increases the file
header by just one byte and is recommended!

When working with file extensions, the user has the capability to control exactly which types
are supported in the project. This can be set in config.h in the following table:

 const CHAR *cMimeTable[] = {
 (const CHAR *)"HTM", // HTML file - will be interpreted by web server
 (const CHAR *)"JPG", // JPG image
 (const CHAR *)"GIF", // GIF image
 (const CHAR *)"CSS", // CSS Cascading Style Sheets
 (const CHAR *)"JS", // Java script
 (const CHAR *)"BIN", // Binary data file
 (const CHAR *)"TXT", // Text data file
 (const CHAR *)"???", // all other types will be displayed as unknown
 };

The number of extensions can be reduced or extended by removing or adding them from/to
the list. The extensions are not case sensitive so test.htm and test.HTM will be identified as
being equivalent – in the FTP server they will however be displayed as HTM, as defined in
the list.

The entry for HTM is very useful since it is used by the HTML parser in the web server to
identify which types of files are to be parsed – it should therefore be present to enable this to
operate correctly (unless SUPPORT_MIME_IDENTIFIER is not activated).

Note also that longer file names, such as html (a typical extension also used for HTML files)
will also be interpreted as equal to HTM. Such a file will later be displayed by the FTP server
as HTM – from the list.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 6/14 5.1.2007

Interface routines

Since the basic workings of the µFileSystem should be quite clear by now, it is worth looking
at how the application can make use of it through its interface routines. These interface
routines are hardware independent and so are portable between processor types and
storage locations (internal or external memory). The prototypes for the routines are found in
driver.h.

Note that the FTP and HTTP server make use of the various file interface routines and so are
a good practical reference. The application can of course make use of the calls if required.

extern unsigned char *uOpenFile(CHAR *ptrfileName);

This call passes a pointer to a file name and returns a pointer to its contents.

Example:

unsigned char * ptrFile = uOpenFile(“MyFile.txt”);

uOpenFile(”M”) is also adequate to access the same named file. The pointer to the
contents can be later used for content retrieval and modification purposes.

extern MAX_FILE_LENGTH uGetFileLength(unsigned char *ptrFile);

This call passes a pointer to a file name and returns the file content length.

Example:

MAX_FILE_LENGTH file_length = uGetFileLength(ptrFile);

extern MAX_FILE_LENGTH uGetFileData
(unsigned char *ptrFile,
MAX_FILE_SYSTEM_OFFSET FileOffset,
unsigned char *ucData,
MAX_FILE_LENGTH DataLength);

This call retrieves the specified amount of bytes content from the offset in the file referred
to by its file pointer. It returns the number of bytes copied, which will be the same as the
number specified (DataLength) if there are enough remaining or else the number of
bytes which could be copied. Using this function it is not actually necessary to know the
file length before accessing.

Example: (the complete contents of the file are retrieved in packets of 50 bytes each.
After the retrieval file_offset also contains the file length)

MAX_FILE_LENGTH file_offset = 0;
MAX_FILE_LENGTH bytes_retrieved = 0;
unsigned char ucBuffer[50];
do {
 bytes_retrieved = uGetFileData(ptrFile, file_offset,
 ucBuffer, 50);
 file_offset += bytes_retrieved;
} while (bytes_retrieved < 50);

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 7/14 5.1.2007

extern MAX_FILE_LENGTH uFileWrite(unsigned char *ptrFile,
unsigned char *ptrData,
MAX_FILE_LENGTH DataLength);

This pointer writes the specified amount of data to the file. Note that only one user can be
writing to a file at one time (single user write). Each call to the write function appends the
data to the previous write position (that is, in a linear fashion starting at the beginning of
the file on the first write and progressing through the file system space on each
subsequent write. The write is terminated after all data has been copied by using the
close command as detailed below.

The routine returns the total length of data copied since the first call. Writes and the total
length are restricted to within the reserved file system space to avoid writing outside of
this space.

The routine automatically deletes and files which may already occupy the space required
by the write, meaning that the user doesn’t have to know whether the space is free or not
beforehand – it will be “bulldozed” free if needed…

Example: The routine copies two blocks of data to the file, where they will be
programmed to the memory (usually FLASH) resulting in the sequence 100 x 0x5a : 100
x 0xb3 – 200 bytes in total. Note that the file contents is not valid until the file has been
closed (see next routine)

unsigned char ucData[100];
uMemset(ucData, 0x5a, 100);
uFileWrite(ptrFile, ucData, 100);
uMemset(ucData, 0xb3, 100);
uFileWrite(ptrFile, ucData, 100);

extern MAX_FILE_LENGTH uFileClose(unsigned char *ptrFile);

This routine is used to close a file whose contents have been fully written. It returns the
length of the file which has been in the process of being written. Note that this is only
used when extensions are not supported – when using SUPPORT_MIME_IDENTIFIER
the following close routine must be used instead.

Example: The file written in the last routine example is closed. It will return the length 200
and is now valid for reading – its name and length are valid.

if (uFileClose(ptrFile) != 200) {
 // Error
}

extern MAX_FILE_LENGTH uFileCloseMime(unsigned char *ptrFile,
unsigned char *ucMimeType);

This routine is used to close a file whose contents have been fully written. It returns the
length of the file which has been in the process of being written. This version of close is
used always when SUPPORT_MIME_IDENTIFIER is defined so that the file extension
can be set.

Example: The file written in the last routine example is closed. It will return the length 200
and is now valid for reading – its name, length and extension type are valid.

unsigned char ucMimeType = MIME_BINARY;
if (uFileCloseMime(ptrFile, &ucMimeType) != 200) {
 // Error
}

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 8/14 5.1.2007

extern int uFileErase(unsigned char *ptrFile,
MAX_FILE_LENGTH FileLength);

This routine is used to erase an area in FLASH. It returns a zero if the erase was
successful or a negative value if not. The erase length is the length of the file to be
erased, or can also be a value equivalent to a number of file granularity sizes (which is
automatically rounded up to suit).

Example: this example shows how one file is deleted by passing its length to the function.

MAX_FILE_LENGTH Length = uGetFileLength(ptrFile);
uFileErase(ptrFile, Length);

extern CHAR uGetFileName(unsigned char *ptrFile)

This routine is passed the name (single digit) of the file. Note that this also returns the
name of the file position pointed to even when the file is not present.

Example:

CHAR cFileName = uGetFileName(ptrFile)

extern unsigned char fnConvertName(CHAR cName);

This routine takes a file name (0..9, ‘a’..’z’ or ‘A’..’Z’ and converts it to a file offset number
from 0 (for ‘0’) to 61 (for ‘Z’). This routine can also be useful for similar signalling methods
often used in the µTasker web interface for control purposes.

Example:

unsigned chat ucValue = fnConvertName(*ptrFileName);

Low level FLASH routines

In addition to the file system interface, there are user accessible low level routines supported
by the FLASH driver of each device. The prototypes to these functions are in hardware.h.

These routines are used by the file system for accessing the memory and are normally the
details are hidden from the user. The functions can however be used if there is a special
need to do so.

extern int fnEraseFlashSector(unsigned char *ptrSector);

This routine is passed a pointer to any location within a sector of FLASH. The individual
sector is then erased and the return value 0 indicates that the erase completed
successfully.

extern int fnWriteBytesFlash(unsigned char *ucDestination,
unsigned char *ucData,
MAX_FILE_LENGTH Length);

This routine copies a buffer of data to the memory starting at the destination address. It
has to be noted that the caller must ensure that the memory has been deleted previously
since it is only possible to program bits from ‘1’ to ‘0’. In some cases, depending on the
device, it is possible to program individual bits and in some cases a minimum word size is
imposed. Such details can be found in the users’ manual to the specific device.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 9/14 5.1.2007

The routine will check to ensure that important programming rules are observed but may
choose to not write if there is an invalid type of access. This is not signalled as an error
but rather the particular write (possibly within a buffer) is silently ignored.

The value 0 is returned when no programming errors occurred.

extern void fnGetParsFile(unsigned char *ParLocation,
unsigned char *ptrValue,
MAX_FILE_LENGTH Size);

This routine is used to retrieve the data directly from the device. It does no further
checking.

Parameter system

The µFileSystem supports an optional parameter system allowing user data to be saved and
restored as required. This is very useful for application variables which must be preserved
when the system is powered off (examples are MAC and IP addresses, password
information, serial interface settings, and many other possibilities).

The parameter system has also an option to use a ‘swap-block’ which will ensure that the
parameters can not be lost when the system is powered down just then as new values were
being saved and also that previous parameters can be retrieved if necessary. The µTasker
demo project makes use of this possibility when saving new IP configuration values which
are used temporarily until the user confirms that they are good, or a trial period times out with
no confirmation. Since the original parameters are still available, they can be re-activated so
that a device doesn’t remain unreachable due to inappropriate settings.

The parameter system can be activated by setting the define USE_PARAMETER_BLOCK in
config.h and the ‘swap-block’ by setting the define USE_PAR_SWAP_BLOCK in config.h.

The size of the parameter block is defined by PARAMETER_BLOCK_SIZE, which must be a
multiple of the FLASH sector size (FLASH_GRANULARITY) as is the case for sizes in the file
system. When USE_PAR_SWAP_BLOCK is activated, two such blocks are reserved and used.

Here are the important differenced between using the parameter system with and without a
‘swap-block’

• When no ‘swap-block’ is present, the block has to be deleted before modifying
parameters. There is a risk of loosing parameters if the system crashes or is powered
off at this instant.

• A ‘swap-block’ requires twice the FLASH memory since the parameters are present
twice.

• Previous parameters can be recovered after testing temporary values when the
‘swap-block’ is activated.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 10/14 5.1.2007

The following are generally valid.

• The space for user parameters is the size of the parameter block – 2 to 8 bytes (these
2 to 8 bytes are used for block management and the exact size depends on the
hardware involved).

• If a device doesn’t support “accumulative writes” it is necessary to use one FLASH
word (size of word depends on device) per variable byte. An example of this is the
M9S12NE64, which uses 16 bit FLASH words and can not perform accumulative
writes. When a block of user parameters is saved, each of the bytes in the block of
variables is saved in an individual word. A parameter block of 512 bytes (the FLASH
granularity in the NE64) can therefore save (512 – 4)/2 bytes [254] of user data.
Other FLASH devices supporting accumulative writes with the same granularity can
save (512 – 2) [510] bytes of user data. This means the limit is given by the chip and
it is always best to know such details… There is a define in the header file belonging
to the device called MAX_SECTOR_PARS which gives the limit for a parameter block of
the size FLASH_GRANULARITY, which may be helpful…

The parameter block management is very simple but it ensures that it is possible to identify if
a block is valid, as opposed to deleted or corrupted by a power cycle during writing. It also
can identify a block with temporarily valid content which may require validation before being
accepted for general use.

• A blank parameter block is a block of FLASH memory completely filled with the value
0xff.

• A block being written but not valid is a block with the first two entities (size of the
entity is a byte where possible but can be up to an unsigned long if the FLASH
doesn’t support byte write) with the value 0xff (up to 0xffffffff). The rest of the data is
presently being written with parameters and some locations will no longer be 0xff

• A valid parameter block is identified by the first entity being set to 0x55 (up to
0x55555555). By simply checking the first entity for this pattern it is clear whether it
contains valid data or not. When using swap blocks it is possible to have two valid
blocks although only one of them is validated (see next paragraph). The valid entity is
already written to the FLASH block after all data has successfully be written – it
therefore ensures that it is never possible to have a valid block with garbage in it due
to a system crash.

• A validated block, as opposed to a temporary valid block, has the value 0x55 (up to
0x55555555) at the second entity location. By using the valid entity and also the
validated entity it is possible to distinguish between the validated block and the
temporary block.

The µTasker demo project makes use of the parameter system and supports both single and
swap blocks. Should the parameter block support be deactivated, the project will always runs
with default setting which means that the desired values (such as IP address) have to be
hard coded and can then not be changed by the normal user.

Although the swap block can be deactivated it is advised also to use it since its advantages
are very useful in real-world projects.

The µTasker demo project provides additional cover functions which use the parameter
system interface routines but add a higher level of user comfort (examples are
fnGetEthernetPars(), fnGetOurParameters() and fnSaveNewPars()). These
serve as useful examples for your own application and can of course be used as they are in
your own project if you wish.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 11/14 5.1.2007

The routine int fnSaveNewPars(int), although an example cover function, is
described here in a little more detail since it shows how the parameter system is used in a
typical application – this has in fact been used in many projects and so why not use its basic
idea in your own? In the following examples it is assumed that a swap block is also being
used. To get to know exactly how it works it is advised to use the µTasker simulator and set
a break point in the function. The details become clear when the code is stepped though.

fnSaveNewPars(SAVE_NEW_PARAMETERS);

Here user parameters are saved from an application structure to the swap block. The
swap block will be set as valid and also as validated while any existing block will be
deleted.

fnSaveNewPars(SAVE_NEW_PARAMETERS_VALIDATE);

Here user parameters are saved from an application structure to the swap block. The
swap block will be set as valid but not validated. The original block (if existing) will
therefore still contain the generally valid data. This block can be validated at a later time
(for example after verification that they are indeed suitable) and used as general
parameters.

fnSaveNewPars(SAVE_NEW_PARAMETERS_CHECK_CRITICAL);

Here user parameters are saved only when no critical data has been changed. I critical
data has indeed been modified the user could then receive a warning before they are
really saved.

Parameter System Routines

The µTasker supports the following interface functions for retrieval, deleting and modifying
information in the parameter system. Their prototypes are defined in driver.h.

extern int fnGetPar(unsigned short usParameterReference,
unsigned char *ucValue,
unsigned short usLength);

This function retrieves usLength bytes of data from the parameter block and copies
them into the buffer pointed to by ucValue. usParameterReference is the offset to
the start of data to be retrieved from the beginning of the data. The function returns a
zero on success or a negative value if the requested parameters do not exist.

Either the validated parameter set or the temporary parameter set can be specified as
shown in the following example:

unsigned char ucBuffer[10];
if (fnGetPar((TEMPORARY_PARAM_SET | 0) , ucBuffer, 10) < 0) {
 if (fnGetPar(0 , ucBuffer, 10) < 0) {
 // no parameters available, use defaults
 }
}

In the example 10 bytes are retrieved from the start of the parameter block. First an
attempt to retrieve them from the temporarily valid parameter block is made, followed
by the validated block. If both fail it means that no parameters are available and so
default values should be used.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 12/14 5.1.2007

extern int fnSetPar(unsigned short usParameterReference,
unsigned char *ucValue,
unsigned short usLength);

This function saves usLength data from the buffer ucValue to the parameter block at
the offset usParameterReference from its start. Note that the caller should carefully
manage the use of this function since it is only possible to change values in FLASH
when they are previously deleted. Therefore this can be called a number of times to
save blocks of data at various FLASH locations but a repeat of a save to certain block
is likely to fail.

The routine returns a zero when the write was successful.

Examples:

unsigned char ucBuffer[10] = {0,1,2,3,4,5,6,7,8,9};
fnSetPar((TEMPORARY_PARAM_SET | 0) , ucBuffer, 10);

The data bytes 0..9 are written to the start of the temporary parameter lock – if the
temporary parameter block is initially empty it will be marked as temporarily valid.

unsigned char ucBuffer[10] = {0,1,2,3,4,5,6,7,8,9};
fnSetPar(0 , ucBuffer, 10);

The data bytes 0..9 are written to the start of the valid parameter block – if there is
initially no valid parameter block (empty FLASH) a block will be marked as valid after
this call.

extern int fnDelPar(unsigned char ucDeleteType)

This routine is used to delete and manipulate the parameter block(s). It returns a zero
when successful.

Examples:

fnDelPar(INVALIDATE_PARAMETER_BLOCK);

All data will be deleted from the valid parameter block and the block will become
invalid.

fnDelPar(INVALIDATE_TEST_PARAMETER_BLOCK);

All data will be deleted from the temporary parameter block and the block will become
invalid.

fnDelPar(SWAP_PARAMETER_BLOCK);

All data will be deleted from the valid parameter block and the block will become
invalid. A valid temporary parameter block will be set as validated block. This call is
used to swap between a backup and a new parameter set.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 13/14 5.1.2007

Practical Example of a user parameter block

typedef struct stPARS
{
 unsigned char ucParVersion; // Versions number to avoid loading incorrect

structure after major changes
 unsigned short telnet_timeout; // TELNET timeout in seconds (0xffff means no

timeout) - max 18 hours
 unsigned short usSerialMode; // serial settings
 unsigned short usTelnetPort; // the port number of our TELNET service
 unsigned char ucServers; // active servers
 unsigned char ucSerialSpeed; // Baud rate of serial interface
 unsigned char ucTrustedIP[IPV4_LENGTH]; // Trusted IP address
 CHAR cUserName[8]; // The single user administrator
 CHAR cUserPass[8]; // The administrator's password
 CHAR cDeviceIDName[21]; // 20 characters for recognition plus null

terminator
 unsigned char ucFlowHigh; // High water flow level for XOFF/CTS (%)
 unsigned char ucFlowLow; // Low water flow level for XON/CTS (%)
 unsigned char ucUserOutputs; // ports set as outputs
 unsigned char ucUserOutputValues; // port values
} PARS;

The µTasker demo project uses a structure containing various settings which can be
modified and saved by the user. This structure is saved along with network parameters
whenever the parameters are saved to FLASH using the parameter system.

This structure can be easily modified or extended to suit your own purposes and then the
changed or extended parameters will also be saved.

Note that the first location is defined as a version number. This is very helpful when working
on a project where the parameters are occasionally being modified since it allows the routine
retrieving the parameters to be sure that the contents are compatible with the structure in the
software.

Imaging that the variable ucSerialSpeed were to be removed. This would mean that the
variables below it in the structure will move up a byte and when retrieving a copy of the
structure from FLASH which was saved using the previous version, they would then be
shifted by one byte.

However if the version number is incremented every time a critical change is made, the
retrieval routine can easily notice that the contents of FLASH are no longer valid and use the
defaults instead. This avoids mistakes being made due to incompatible parameters and is
recommended for general use.

www.uTasker.com µTasker – uFileSystem V1.3

uTaskerFileSystem.doc/0.02 14/14 5.1.2007

Modifications:
V0.02 5.1.2007:
- updated to include parameter description and be valid for µTasker release V1.3

