

uTaskerTimers.doc/0.02 Copyright © 2011 M.J.Butcher Consulting

Embedding it better...

µTasker Document

Global Software and Hardware Timers

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 2/10 17.05.2011

Table of Contents
1. Introduction ...3

2. Introduction to the µTasker Global Timers ..4

3. A Demonstration of the Global Software Timers in action ..4

4. A Demonstration of the Global Hardware Timers in action ..8

5. Hardware Details ...9

6. Conclusion .. 10

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 3/10 17.05.2011

1. Introduction

µTasker is an operating system designed especially for embedded applications where a tight
control over resources is desired along with a high level of user comfort to produce efficient
and highly deterministic code.

The operating system is integrated with TCP/IP stack and important embedded Internet
services along side device drivers and system specific project resources.

µTasker and its environment are essentially not hardware specific and can thus be moved
between processor platforms with great ease and efficiency.

However the µTasker project setups are very hardware specific since they offer an optimal
pre-defined (or a choice of pre-defined) configurations, taking it out of the league of “board
support packages (BSP)” to a complete “project support package (PSP)”, a feature enabling
projects to be greatly accelerated.

This document discusses the implementation and use of Global Software and Hardware
Timers in the V1.3 release.

Note: The Global Hardware Timers are not included in all processor packages. They are also
no longer recommended for general use – see the document concerning hardware timers
http://www.utasker.com/docs/uTasker/uTaskerHWTimers.PDF for the new preferred method
based on various hardware timer sources possible with specific processor resources.

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 4/10 17.05.2011

2. Introduction to the µTasker Global Timers

The µTasker Mono-stable Timers are discussed in the operating system introduction
“uTaskerV1.3.doc” and the Global Timers are also introduced.

Here the advantages of this technique are discussed in more detail and the options to test
these in the µTasker demo project are detailed.

Although it is often possible for a system to fulfil all requirements using the task mono-stables
– one task has one unique mono-stable timer if this is defined in its configuration – there are
certain circumstances where either multiple or high resolution timers are of advantage or
necessity. These are made available by a special task called the Global Timer Task.

The Global Timer Task is activated by using the define GLOBAL_TIMER_TASK in config.h.

It has its own mono-stable timer which is however used together with a timer queue to realise
multiple timers. The amount of timers supported can be set by using the define
TIMER_QUANTITY and the value should be chosen to suit the maximum parallel timer use

by the system.

3. A Demonstration of the Global Software Timers in action

The µTasker demo project includes a demonstration of using and testing such timers. This
can be activated in the file application.c by commenting in the define

TEST_GLOBAL_TIMERS.

When this define is set, several timers are started in parallel and their timeout events are
handled so that their operation and capabilities are visible.

Three parallel timers are started in the routine fnStartGlobalTimers():

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 5/10 17.05.2011

static void fnStartGlobalTimers(void)

{

 CONFIG_TIMER_TEST_LEDS(); // configure and light 2 test LEDs

 TIMER_TEST_LED_ON();

 TIMER_TEST_LED2_ON();

#ifdef GLOBAL_HARDWARE_TIMER

 uTaskerGlobalMonoTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 (CLOCK_LIMIT)(10*MILLISEC), E_TIMER_TEST_10MS); // start a 10mS timer

 uTaskerGlobalMonoTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 (CLOCK_LIMIT)(3*MILLISEC), E_TIMER_TEST_3MS); // start a 3mS timer

 uTaskerGlobalMonoTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 (CLOCK_LIMIT)(5*MILLISEC), E_TIMER_TEST_5MS); // start a 5ms timer

#else

 uTaskerGlobalMonoTimer(OWN_TASK, (CLOCK_LIMIT)(10*SEC),

 E_TIMER_TEST_10S); // start a 10s timer

 uTaskerGlobalMonoTimer(OWN_TASK, (CLOCK_LIMIT)(3*SEC),

 E_TIMER_TEST_3S); // start a 3s timer

 uTaskerGlobalMonoTimer(OWN_TASK, (CLOCK_LIMIT)(5*SEC),

 E_TIMER_TEST_5S); // start a 5s timer

#endif

}

Note that the code will either test slow software timers (in the seconds range) or fast
hardware timers (in the ms range) depending on the configuration of hardware timer support.
Initially the discussion will concern Global Software Timers and afterwards treat the Global
Hardware Timer option – note however that both types can also be used together.

The three uTaskerGlobalMonoTimer() calls are used to start three parallel timers

belonging to the calling task. Each timer is defined to have a timeout period represented in
seconds: eg.

 (CLOCK_LIMIT)(3*SEC)

The limit is defined in types.h for a project, depending on the longest timeout which can be
supported.

Each timer is defined a unique event, eg.

 E_TIMER_TEST_3S

Note that if a timer belonging to a particular task is started with the same event number as
one which is already in operation, this results in the original one being ‘retriggered’. A new
event number will cause a further parallel timer to be started assuming that there is enough
space I the Global Timer Queue pool (see TIMER_QUANTITY). Note also that an event with

the value 0 Is not allowed so the event number must always be a non-zero value from 1..255.

As it stands, the following actions have thus been initiated:

E
_
T

IM
E

R
_
T

E
S

T
_
3
S

10s

3s

5s

T0

Timer 1

Timer 2

Timer 3

E
_
T

IM
E

R
_
T

E
S

T
_
5
S

E
_
T

IM
E

R
_
T

E
S

T
_
1
0
S

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 6/10 17.05.2011

The Global Timer Task is responsible for the management of the Global Timers in the
system and when one (or more) timers time out, it sends a corresponding timer event to the
owner task. This timer event is in fact compatible with the local Mono-stable timer event and
is received in the task’s input buffer as discussed in the µTasker operating system document
“uTaskerV1.3.doc”.

The demo project handles timer events in the routine fnHandleGlobalTimers().

// Test timer event handler

//

static void fnHandleGlobalTimers(unsigned char ucTimerEvent)

{

 switch (ucTimerEvent) {

 case E_TIMER_TEST_3S:

 TIMER_TEST_LED_OFF();

#ifdef GLOBAL_HARDWARE_TIMER

 uTaskerGlobalMonoTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 (CLOCK_LIMIT)(3*MILLISEC), E_TIMER_TEST_3MS); // restart 3ms timer

#else

 uTaskerGlobalMonoTimer(OWN_TASK,

 (CLOCK_LIMIT)(3*SEC), E_TIMER_TEST_3S); // restart 3s timer

#endif

 break;

 case E_TIMER_TEST_5S:

 TIMER_TEST_LED_ON();

#ifdef GLOBAL_HARDWARE_TIMER

 uTaskerGlobalStopTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 E_TIMER_TEST_3MS); // kill the 3ms timer

 uTaskerGlobalMonoTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 (CLOCK_LIMIT)(4*MILLISEC),E_TIMER_TEST_10MS); // shorten 10 timer

 uTaskerGlobalMonoTimer((UTASK_TASK)(OWN_TASK | HARDWARE_TIMER),

 (CLOCK_LIMIT)(4*MILLISEC),E_TIMER_TEST_4MS);// start a new 4ms timer

#else

 uTaskerGlobalStopTimer(OWN_TASK, E_TIMER_TEST_3S); // kill the 3s timer

 uTaskerGlobalMonoTimer(OWN_TASK,

 (CLOCK_LIMIT)(4*SEC), E_TIMER_TEST_10S); // shorten 10s timer

 uTaskerGlobalMonoTimer(OWN_TASK, (CLOCK_LIMIT)(4*SEC),

 E_TIMER_TEST_4S); // start a new 4s timer

#endif

 break;

 case E_TIMER_TEST_10S:

 TIMER_TEST_LED_OFF();

 break;

 case E_TIMER_TEST_4S:

 TIMER_TEST_LED2_OFF();

 break;

 default:

 break;

 }

}

Again this handler routine supports either Global Software or Global Hardware timers for
demonstration purposes. It shows the following functions:

• A timer can be ‘retriggered’ by calling uTaskerGlobalMonoTimer() with an

existing owner task/event number combination.

• A timer can be stopped by calling uTaskerGlobalStopTimer().

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 7/10 17.05.2011

The result of this code produces the following sequence which can be verified using the
µTasker or on the target hardware by monitoring the test LED states.

E
_
T

IM
E

R
_
T

E
S

T
_
3
S

10s

3s

5s

T0

Timer 1

Timer 2

Timer 3

E
_
T

IM
E

R
_
T

E
S

T
_
5
S

E
_
T

IM
E

R
_
T

E
S

T
_
1
0
S

LED1

LED2

3s

Timer 4

E
_
T

IM
E

R
_
T

E
S

T
_
4
S

1. The 3s timer fires and distinguishes the first test LED. It restarts itself immediately
with another 3s period.

2. 2s later the 5s timer fires and turns on the first test LED again. It kills the 3s timer
(which would otherwise have fired 1s later). It retriggers the 10s timer with a 4s delay
and starts a new 4s timer.

3. 4s later (9s after the start of the test) the timers with events E_TIMER_TEST_4S and
E_TIMER_TEST_10S fire at the same time. E_TIMER_TEST_10S distinguishes the
first test LED and E_TIMER_TEST_4S extinguishes the second Test LED.

There are some checks which can be made to ensure that the test has indeed fulfilled its
aims.

1. The 3s timer should never fire a second time since it was killed before its second
timeout occurred.

2. The 10s timer was shortened to 9s.

3. The 10s and 4s timers fired together.

Note that although a fourth timer is illustrated this is probably using the queue resources
freed by the killed timer 2 or the fired timer 3 and so there are in fact a maximum of 3 timer
resources used throughout the test.

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 8/10 17.05.2011

4. A Demonstration of the Global Hardware Timers in action

Note: The Global Hardware Timers are not included in all processor packages. They are also
no longer recommended for general use – see the document concerning hardware timers
http://www.utasker.com/docs/uTasker/uTaskerHWTimers.PDF for the new preferred method
based on various hardware timer sources possible with specific processor resources.

If the define GLOBAL_HARDWARE_TIMER is enabled in config.h the demonstration code

will use hardware timers and much shorter timeout periods. This demonstrates the use of
these timers and their advantages over the Global Software Timers.

Note that the Global Hardware Timer version uses events like E_TIMER_TEST_3MS but
these are in fact the same values as used by the second equivalents.

When starting a Global Hardware Timer there are two differences in the call.

The owner task is defined by (UTASK_TASK)(OWN_TASK | HARDWARE_TIMER) – which
sets a flag to indicate that the hardware timer resources are to be used – and the timeout
period is defined in ms rather than seconds. (CLOCK_LIMIT)(4*MILLISEC)

The reason for using milliseconds is that the Hardware Timers are generally used where
short timeout periods with high resolution are required and these tend to be in this range
whereas the Software Timers tend to be used for longer delays in the seconds range (but
can of course also be used in the sub-second range by calling with for example
(CLOCK_LIMIT)(0.1*SEC).

The MILLISEC conversion allows fixed delays to be calculated at compiler time and so
achieve highest calculation efficiency and is configured to suit the underlying hardware.

The test runs simple faster and so it is best to monitor the test LEDs with an oscilloscope to
verify that they are indeed accurate.

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 9/10 17.05.2011

5. Hardware Details

The Global Software Timers operate using the system TICK, which requires one hardware
timer on the processor. Processors often have a simple timer called the PIT (Periodic
Interrupt Timer) which is designed especially for this purpose.

The Global Hardware Timers require a second hardware timer to operate. This timer is not a
periodic timer like the TICK but instead is set up and used only when a delay is really
required. When more that one Global Hardware Timer is active the Global Timer Task
coordinates the use of the hardware timer so that always the shortest timeout period is
programmed and reuses it to generate remaining delays for other outstanding timeouts.

The timer used for this second timer has to be available and free. Its characteristics can also
vary greatly between processors types.

Depending on the capability and flexibility of timer available for use, the µTasker usually
offers a configuration to achieve either greatest resolution of longest timeout period. This can
be set in the project hardware header – eg. app_hw_m5223x.h

// Global Hardware Timer setup

//

#ifdef GLOBAL_TIMER_TASK

 #define MILLISEC LOW_RES_MS // longest period

 //#define MILLISEC MED_RES_MS // compromise between resolution and period

 //#define MILLISEC HIGH_RES_MS // highest resolution with shortest max. delay

#endif

Here the most suitable setting can be chosen depending on the projects requirements.

The following table shows the timers used and their limitations in the µTasker projects which
support the Global Timer operation.

Processor and project configuration Hardware Timer
used

Hardware
resolution

Max. delay
(approx.)

M5223X – LOW_RES_MS (60MHz) DMA Timer 3 (32 bit) 71us 81 hours

M5223X – MED_RES_MS (60MHz) DMA Timer 3 (32 bit) 4us 305 minutes

M5223X – HIGH_RES_MS (60MHz) DMA Timer 3 (32 bit) 0.26us 19 minutes

NE64 – LOW_RES_MS (50MHz) T.B.D T.B.D T.B.D

NE64 – MED_RES_MS (50MHz) T.B.D T.B.D T.B.D

NE64 – HIGH_RES_MS (50MHz) T.B.D T.B.D T.B.D

SAM7X – LOW_RES_MS (47.92MHz) TIMER 2 (16 bit) 22us 1.42s

SAM7X – MED_RES_MS (47.92MHz) TIMER 2 (16 bit) 3us 177ms

SAM7X – HIGH_RES_MS (47.92MHz) TIMER 2 (16 bit) 1us 44ms

STR91XF – LOW_RES_MS (96MHz) TIMER 2 (16 bit) 2.6us 174ms

STR91XF – MED_RES_MS (96MHz) TIMER 2 (16 bit) 0.66us 43.7ms

STR91XF – HIGH_RES_MS (96MHz) TIMER 2 (16 bit) 0.33us 21.8ms

LPC23XX – LOW_RES_MS (72MHz) T.B.D T.B.D T.B.D

LPC23XX – MED_RES_MS (72MHz) T.B.D T.B.D T.B.D

www.uTasker.com µTasker – Timers V1.4

uTaskerTimers.doc/0.02 10/10 17.05.2011

LPC23XX – HIGH_RES_MS (72MHz) T.B.D T.B.D T.B.D

1. Note that processors with 32 bit hardware timers enable very flexible hardware timer
delays. Processors with only 16 bit timers tend to be suited only to short but accurate delays.

2. Note that when simulating hardware timers with the µTasker simulator the accuracy of
delays is limited to the TICK rate of the simulator. Generally this is not a restriction since the
simulator can still verify basic software operation but this limitation should be understood and
tests at full speed on the target are often unavoidable.

6. Conclusion

This document has explained the use of the Global Software and Hardware timers support in
the µTasker project. Global Hardware timers are typically important when short but accurate
delays are required whereas the Global Software timer (as are the task’s own Mono-stable
timers) is best suited to longer delays which require only a resolution equal to the system
TICK resolution.

Depending on the hardware platform the longest delay possible with a hardware timer is
restricted by the hardware capabilities – these have been represented in a table for easy
comparison.

The µTasker demo project has Global Timer support test code which can be activated if
required. It illustrates the use and capabilities of these multiple parallel timers and serves as
test case for verification of correct functionality.

Modifications:
- V0.01 15.5.2007 – original version

- V0.02 17.5.2011 – New title page and note about the global hardware timers not being
recommended for new project, with reference to processor specific hardware timers

