

uTaskerUserFiles.doc/0.03 Copyright © 2010 M.J.Butcher Consulting

���������	�
	��

�����	

µTasker Document

µTasker – User Files

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 2/14 29.09.2010

Table of Contents
1.� Introduction ...3�
2.� Activating User File Support ...3�
3.� User File Lists ...4�
4.� Interaction with the FTP server ..5�
5.� Interaction with the HTTP server ...5�
6.� Further Examples of the Use of User Files ...7�

6.1.� Adding a Favicon ...7�
6.2.� Handling AJAX ...8�
6.3.� RAM Based File Content ..8�

7.� Embedded User Files and the Utility uTaskerFileCreate ..9�
7.1.� Complete User File System in a single C-File .. 10�
7.2.� User File Collection Embedded in a µFileSystem File 11�
7.3.� Activating an Embedded User File Collection ... 12�
7.4.� Embedding Files without Extensions and using XML? Directives 13�

Conclusion ... 14�

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 3/14 29.09.2010

1. Introduction

The µTasker project includes a simple but highly efficient file system called µFileSystem
which is primarily used to store web pages and similar data. These files can be transferred
and viewed via FTP for easy management and updating, which avoids the need to compile
data into a project.

In some situations there may however be advantages when one or more files can be
included as a part of compiled code or even be constructed in SRAM. This document
explains how this option can be used together with the FTP and HTTP server and gives
examples of its use in some typical applications.

A further option of embedding the user files in a single uFileSystem file is then described
together with the operation of the uTaskerFileCreater utility, which can be used to automate
the generation of such a file or for creating an include file for a collection of user files.

2. Activating User File Support

To work with user files the define FLASH_FILE_SYSTEM must be activated in config.h.
This enables the operation together with the µFileSystem, FTP and HTTP servers, whereby
the user files have priority over files in the µFileSystem; if two files were to have the same
name, the user file would be the one used instead of the one in the µFileSystem space. User
files have read-only characteristics and so generally cannot be modified without their content
being recompiled. In some cases user files may be constructed in SRAM and so can be
freely modified during operation by application level code.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 4/14 29.09.2010

3. User File Lists

Per default there are no user files which can be accessed by the FTP and HTTP servers, so
the application must enter these before they can be used. This has however an advantage in
that they can be deactivated if desired or a different set entered during operation. For
example, when there are no files in the µFileSystem the application can choose to enter a set
of default web pages which exist in user code space. These can then enable the upload of
new web pages to the µFileSystem, after which the uploaded files are used in preference. If
required, file content can also be created in SRAM and accessed as a user file.

The following code shows two simple HTML user files created in program code space:

static const CHAR start_page[] =
 "<html><head><title>uTasker Test</title></head><body>This is a start test page
embedded in the code
Go to main start page
Test another embedded page</body></html>";
static const CHAR link_page[] = "This is another embedded page - Go to main start page";

static const USER_FILE user_files[] = {
 {"link.htm", (unsigned char *)link_page, (sizeof(link_page) - 1),
 MIME_HTML, FILE_VISIBLE},,
 {"0HTTP", (unsigned char *)start_page, (sizeof(start_page) - 1),
 MIME_HTML, (FILE_VISIBLE | FILE_ADD_EXT)},
 // define start on web server contact
 {0} // end of list
};

The USER_FILE list specifies a name for the file, its content type, its location in memory and
its content size. Note that the content type doesn’t need to match with the file name – this
has some special advantages as seen later in this document. The file name 0HTTP is a
special name which will be accessed in preference by any contact with the web server
without a defined file name; it corresponds to a user defined start web page. The files are
marked as being visible files, which means that they will be displayed as read-only files via
FTP. In the case of the user file with name 0HTTP, which has no inherent extension, this will
be displayed as 0HTTP.htm via FTP.

This user file list is however only valid when the application also enters it by calling:

 fnEnterUserFiles((USER_FILE *)user_files); // enter the user file list

If the list is to be revoked the call can be repeated with a null pointer as shown below:

 fnEnterUserFiles(0); // disable user file list

Alternate file lists (either const lists or dynamic lists constructed in SRAM) can be set at any
time.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 5/14 29.09.2010

4. Interaction with the FTP server

Depending on a file’s defined properties it can be visible via FTP or it can be hidden. See the
AJAX examples later in the document for cases for using invisible files. Furthermore, files
which have no inherent extension (eg. 0HTTP in the example in the previous section) can be
displayed with the defined MIME extension type. This means that the file 0HTTP, accessed
without an extension, can be nevertheless be displayed as 0HTTP.htm via FTP.

All visible files are displayed as read-only files and can neither be deleted nor updated by
FTP.

5. Interaction with the HTTP server

When a remote user establishes a connection with the HTTP server from a web browser, the
initial access doesn’t specify a file to be served but leaves the web server to decide which
start page is to be displayed. When the user file list is not activated this start page will always
be the file “0.htm” from the µFileSystem. Should this file not exist the 404 error page will be
displayed.

In order to specify that a certain file from the user file space is to be used it should be
entered with a name “0HTTP” and mime type MIME_HTML. This will be used in preference to
“0.htm” if it exists.

User files are referenced using their full names, including extension. For example
“link.htm”, as in the example in section 3. “link.htm” will take priority over a µFileSystem
file with the name “l.htm”. Since the user file list uses full names, the µFileSystem file
“l.htm” will be accessed if the full name doesn’t match completely. For example if “L.htm”
or “li.htm” or “lin.htm” were to be referenced. User files are also case-insensitive and so
“link.htm” is equivalent to “LINK.htm” etc.

Since the HTTP server works autonomously with files the user doesn’t need to know whether
the files being served are located in the µFileSystem memory, which can be in internal or
external SPI based FLASH, or are located in user code (or user RAM) space. HTML type
user files will still be parsed by the web server to allow adding or generating dynamic content
if this is enabled in the project.

Code based user files operate correctly when working with the µTasker simulator, FTP and
web server, enabling comfortable development and testing of code based and also dynamic
RAM constructed web files.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 6/14 29.09.2010

The effect of the simple web server test is the following page being displayed when the web
server is first contacted:

Clicking on the link “Test another embedded page” results in the second user file being
served:

From this page the main start side can be navigated to, which is taken from the uFileSystem
rather than the user file space.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 7/14 29.09.2010

6. Further Examples of the Use of User Files

6.1. Adding a Favicon

A favicon.ico is a small icon image which can be displayed at the start of the URL in the
web browser. This simple image is a useful way of adding a personal touch to the web
server.

A favicon can be seen in the following browser screen shot (compare with the previous
screen shots):

The favicon is requested (by file name “favicon.ico”) by most web browsers when
connecting to a web server. Often this is only requested the first time that contact is made to
a new web server and then cached, meaning that the cache may need to be cleared to force
a new image to be updated by the web server.

Adding a favicon is extremely easy and requires one additional entry in the user file table:
..
{"favicon.ico", (unsigned char *)uTaskerfavicon, sizeof(uTaskerfavicon),
 MIME_ICON, FILE_VISIBLE},
..

For completeness, the following shows the µTasker favicon image content, added as an
array:

static const unsigned char uTaskerfavicon[] = {
 0x00, 0x00, 0x01, 0x00, 0x01, 0x00, 0x10, 0x10, 0x10, 0x00, 0x00, 0x00, 0x00, 0x00, 0x28, 0x01,
 0x00, 0x00, 0x16, 0x00, 0x00, 0x00, 0x28, 0x00, 0x00, 0x00, 0x10, 0x00, 0x00, 0x00, 0x20, 0x00,
 0x00, 0x00, 0x01, 0x00, 0x04, 0x00, 0x00, 0x00, 0x00, 0x00, 0xc0, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x80, 0x00, 0x00, 0x80, 0x00, 0x00, 0x00, 0x80, 0x80, 0x00, 0x80, 0x00,
 0x00, 0x00, 0x80, 0x00, 0x80, 0x00, 0x80, 0x80, 0x00, 0x00, 0x80, 0x80, 0x80, 0x00, 0xc0, 0xc0,
 0xc0, 0x00, 0x00, 0x00, 0xff, 0x00, 0x00, 0xff, 0x00, 0x00, 0x00, 0xff, 0xff, 0x00, 0xff, 0x00,
 0x00, 0x00, 0xff, 0x00, 0xff, 0x00, 0xff, 0xff, 0x00, 0x00, 0xff, 0xff, 0xff, 0x00, 0xf9, 0x99,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x99, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x99,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xf9, 0x99, 0x89, 0x98, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99,
 0x99, 0x99, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xdf, 0xf9, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99,
 0xff, 0xf8, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99,
 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99,
 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99,
 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xf9, 0x99, 0xff, 0xff, 0x99, 0x9f, 0xff, 0xff, 0xff, 0xff,
 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
};

This array was generated from a suitable icon image by using the conversion utility
“uTaskerFileCreate” in the µTasker “Tools” project directory.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 8/14 29.09.2010

6.2. Handling AJAX

AJAX is a client side technology which works together with JAVA script. One of its main
advantages is that it allows web server content to be updated in a web browser without the
complete page needing to be reloaded, for example a single value being continuously
updates without the need to transfer and re-draw the complete page content. There is a
simple introduction to using AJAX on the µTasker forum:
http://www.utasker.com/forum/index.php?topic=159.0

For the web server this involves responding to GET requests of the type XML?value_x,
which represents a request of, for example, the variable value_x. The web server simply
serves the variable in the format "<value_x>£vX4</value_x>“ so that the web browser
can update its display locally.

Although not the only method, user files can be used as a simple was of interpreting such
GET requests to return the correct page content.
..
 {"XML?value_x", (unsigned char *)ajax1, (sizeof(ajax1) - 1),
 MIME_HTML, FILE_INVISIBLE},
..

This causes the specific GET request to directly serve a predefined file content, such as that
specified by

static const CHAR ajax1[] = "<value_x>£vX4</value_x>";

Note that the file is declared to be invisible (because it is not actually a file in the usual
context) and so will not be listed via FTP. The file name has no extension since it is used to
reference a particular XML request, but it has been given HTM type characteristics. This is
very useful since the web server, when serving this simple file content, will parse it as any
other HTM type file. The standard web content interface can then be used to insert the
content referenced by £vX4 as is usual for the µTasker content inserter. This enables highly
flexible content to be inserted also in XML responses using a simple XML interpreter
technique. The following µTasker forum topic discusses inserting string content
http://www.utasker.com/forum/index.php?topic=94.0

6.3. RAM Based File Content

Both the user file table and its content can be situated in code FLASH, data FLASH or RAM.
When RAM is used, the table and/or the content can be dynamically modified, which allows
complete web page content to be changed by the application code to suit instantaneous
requirements.

If the user file table is maintained in RAM, the file content type can also be modified
dynamically, allowing it to be parsed (with HTM type and type with lower value) for additional
content insertion, or excluded from parsing (with any other type with a higher value).

The user file table can also be exchanged at any time for an alternative set (eg. when the
system is preparing new dynamic content which shouldn’t be disturbed), by recalling the
fnEnterUserFiles() routine.

One useful advantage of using a RAM based file is that its contents can be frequently
updated without any issues of FLASH wear-out.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 9/14 29.09.2010

7. Embedded User Files and the Utility uTaskerFileCreate

The utility uTaskerFileCreate is delivered with the µTasker project and is contained in the
directory \Tools.

The simplest use of the utility is to generate a C-code array from any other file, which may be
an image file or HTM file, etc, as was shown in section 6 to generate code from a
favicon.ico. The syntax to perform this is

 uTaskerFileCreate favicon.ico favicon.c uTaskerfavicon

where the first argument is the input file, the second the output file (containing the C-code)
and the third an optional array name (if nothing is specified it defaults to array[]).

To check the version of the utility it can be called with the version argument:

 uTaskerFileCreate –v

A further, and more powerful use of the utility, is to generate a collection of files to form a
user file system collection. This allows automation of the generation of the content of each
file as well as the user table. The syntax for performing this is:

 uTaskerFileCreate -f user_files.txt 1UserFiles.bin

where the –f informs the program that it is receiving a file containing instructions to perform
the job. This file is, in this example, called user_files.txt. The final argument is the file
name of a binary image to be produced. In this case it is defined to be 1UserFiles.bin (a
bin file) but this will also cause a second file to be generated called 1UserFiles.c. This
second one contains complete C-code for the user file system and its individual file contents.
The binary output will be discussed after first looking at the C-file created by the specific
command file.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 10/14 29.09.2010

7.1. Complete User File System in a single C-File

The following shows the contents of a command file to generate an output file containing a
number of individual files with differing properties:
// This file is used as input to which files are added to the packed user file
table (avoid tab use)

#define FILE_HEADER_LEN 5 // this must match with uFileSystem
setting
#define MAX_FILE_LENGTH 4 // size in bytes
#define BIG_ENDIAN 1 // target is big-endian - set 0 for little
#define ALIGN 1 // align the table to allow direct
accesses to long pointers - set 0 if not important

#define FILE_VISIBLE 0 // defines for use when generating binary
content - use only decimal input
#define FILE_INVISIBLE 1
#define FILE_ADD_EXT 2

#define MIME_HTML 0
#define MIME_JPG 1
#define MIME_GIF 2
#define MIME_CSS 3
#define MIME_JAVA_SCRIPT 4
#define MIME_BINARY 5
#define MIME_TXT 6
#define MIME_ICON 7
#define MIME_BMP 8

%19800 // location (hex) in uFileSystem (eg. corresponding
to '1')

0Menu.htm -w -T=MIME_HTML // remove additional white space to minimise size for
all html files
1Lan.htm -w -T=MIME_HTML
3I_O.htm -w -T=MIME_HTML
BLogo.gif -T=MIME_GIF // no white space removal defined for images
9Generate.bin -c=FILE_INVISIBLE -T=MIME_HTML // this file will be invisible since
it is used for dynamic content control only
5admin.htm -w // when no type is specified the default is HTML
7help.htm -w
8serial.htm -w
AStats.htm -w
Dback.jpg -T=MIME_JPG // no white space removal defined for images
favicon.ico -T=MIME_ICO // favicon from the chip manufacturer (or project
specific)
// end

The relevant file names for the generation of the C-file output are shown highlighted above
and results in each of the files being converted to its own array with the name _file (eg.
0Menu.htm will result in the array _0Menu[]). For html files the –w argument can be used
to cause unnecessary white space in the original file to also be deleted in order to save
unnecessary array space. All of these individual arrays are collected together in the output C-
file.

In addition to the arrays, the user file table user_files is also automatically generated. The
argument –T is used to specify the mime-type of each file and the argument –c is used to
specify special properties (characteristics). These entries were discussed in detail in earlier
sections of this document.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 11/14 29.09.2010

The C-content looks like this (data content and several arrays removed):

static const unsigned char _0Menu[] = {
0x3c,0x68,0x74,0x6d,0x6c,0x3e,0x3c,0x68,0x65,0x61,0x64,0x3e,0x3c,0x6d,0x65,0x74,0x61,0x20,0x68,0x74,0x74,0x
70,0x2d,0x65,0x71,0x75,0x69,0x76,0x3d,0x22,0xa3,0x76,
.......
};
static const unsigned char _1Lan[] = {
0x3c,0x68,0x74,0x6d,0x6c,0x3e,0x3c,0x68,0x65,0x61,0x64,0x3e,0x3c,0x6d,0x65,0x74,0x61,0x20,0x68,0x74,0x74,0x
70,0x2d,0x65,0x71,0x75,0x69,0x76,0x3d,0x22,0x63,0x6f,
.......
};
static const unsigned char _3I_O[] = {
0x3c,0x68,0x74,0x6d,0x6c,0x3e,0x3c,0x68,0x65,0x61,0x64,0x3e,0x3c,0x6d,0x65,0x74,0x61,0x20,0x68,0x74,0x74,0x
70,0x2d,0x65,0x71,0x75,0x69,0x76,0x3d,0x22,0x63,0x6f,
.......
};

.....

static const USER_FILE user_files[] = {
{"0Menu.htm", (unsigned char *)_0Menu, sizeof(_0Menu), MIME_HTML, FILE_VISIBLE},
{"1Lan.htm", (unsigned char *)_1Lan, sizeof(_1Lan), MIME_HTML, FILE_VISIBLE},
{"3I_O.htm", (unsigned char *)_3I_O, sizeof(_3I_O), MIME_HTML, FILE_VISIBLE},
{"BLogo.gif", (unsigned char *)_BLogo, sizeof(_BLogo), MIME_GIF, FILE_VISIBLE},
{"9Generate.bin", (unsigned char *)_9Generate, sizeof(_9Generate), MIME_HTML, FILE_INVISIBLE},
{"5admin.htm", (unsigned char *)_5admin, sizeof(_5admin), MIME_HTML, FILE_VISIBLE},
{"7help.htm", (unsigned char *)_7help, sizeof(_7help), MIME_HTML, FILE_VISIBLE},
{"8serial.htm", (unsigned char *)_8serial, sizeof(_8serial), MIME_HTML, FILE_VISIBLE},
{"AStats.htm", (unsigned char *)_AStats, sizeof(_AStats), MIME_HTML, FILE_VISIBLE},
{"Dback.jpg", (unsigned char *)_Dback, sizeof(_Dback), MIME_JPG, FILE_VISIBLE},
{"favicon.ico", (unsigned char *)_favicon, sizeof(_favicon), MIME_ICO, FILE_VISIBLE},
{0} // end of list
};

The file can be linked into a project and used as user file content by simply entering its
user_file with

fnEnterUserFiles((USER_FILE *)user_files); // enter the user file list

7.2. User File Collection Embedded in a µFileSystem File

For further flexibility, the same user files as linked in to the project using the generated C-file
can by transferring as binary output file to the µFileSystem (using FTP or HTTP post, etc.).
For this to be possible the define EMBEDDED_USER_FILES should be active in config.h as
well as the INTERNAL_USER_FILES define.

The extra information in the control file is used to generate the content of the binary file so
that it also contains the complete data, including the user file table in a form compatible with
the project and used compiler.

• First, the defines should match with project defines so that the generated table values
are correct.

• Secondly, the value for the physical address location of the µFileSystem file is
specified by the hexadecimal value %19800. This is the address of the file ‘1’ (also
corresponding to the generated binary file name according to µFileSystem rules) in a
particular project. Thus, by copying the file 1UserFiles.bin by FTP it will be saved
starting at the address 0x19800 as an embedded user file collection, with the
possibility of deleting and updating without the need to recompile and reload the
complete project code.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 12/14 29.09.2010

7.3. Activating an Embedded User File Collection

Before the embedded user file collection is activated it is important that its validity is checked.
The checking and activation is supported by the function

extern USER_FILE *fnActivateEmbeddedUserFiles(CHAR *cFile, int
iType);

If the function can verify that the file contains a valid user file table it will return a pointer to
the table, or else it will return 0. The following shows this in operation, whereby a code based
user file will be entered as default if the embedded collection is not available at the specified
location (the location being µFileSystem file ‘1’)

 if (fnActivateEmbeddedUserFiles("1", USER_FILE_IN_INTERNAL_FLASH) == 0) {
 // if valid embedded user file space is
 found activate it, else use code embedded version
 fnEnterUserFiles((USER_FILE *)user_files); // code based user_files
 }

Note that this needs to be repeated after loading a new embedded user file collection or else
it is valid at the following restart. The same is true if the embedded user file collection should
be deleted during operation.

It is very important to understand the effect of the parameter
USER_FILE_IN_INTERNAL_FLASH since this may only be used when the µFileSystem file
containing the embedded user file collection is addressable in memory. This allows the user
file table to be access directly as if it were in code space.

When working with the µFileSystem in external memory, which cannot be addressed directly
(like SPI FLASH) it is important to use the parameter USER_FILE_IN_EXTERNAL_SPACE
instead. This then allows the operation with external memory accesses. To achieve this it
does however need to first make a copy of the user table in local RAM (taken from the
µMalloc heap). In addition, the file names (strings) are also copied from the embedded file
content to local SRAM, again on µMalloc heap. This backup to SRAM is performed in the
routine fnActivateEmbeddedUserFiles().

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 13/14 29.09.2010

7.4. Embedding Files without Extensions and using XML? Directives

When generating an embedded user file collection containing files which have no extension
(eg. 0HTTP rather than 0HTTP.htm) it is necessary to instruct the parser that it doesn’t need
to search for a file extension. This is performed by using the symbol | as shown below:

 0HTTP| -w –T=MIME_HTML

In order to include XML? directives (see the chapter about AJAX for more details about their
use) the following technique can be used:

 XML?Dummy| -c=FILE_INVISIBLE -w -T=MIME_HTML

The XML?Dummy input file cannot be saved on a PC with this name since it is an illegal
name, therefore it should be stored as a file named XML-Dummy (without extension). The
conversion utility will automatically look for a corresponding input file with this name when it
encounters XML? and this results in the normal entry XML?Dummy being made in the user file
table.

www.uTasker.com µTasker – User Files

uTaskerUserFiles.doc/0.03 14/14 29.09.2010

Conclusion

The user file system has been introduced with examples of its practical use in typical
embedded projects. Since the user file table and its content can be located in either FLASH
or RAM its use is extremely flexible in handling various requirements, including an AJAX
XML interpreter interface.

User files can individually be given characteristics to allow them to be parsed by the web
server, made visible or invisible to the FTP server.

The utility uTaskerFileCreate has been introduced to show how it can be used to
generate C-code arrays of either single files (images, HTM etc.) or for automatically
generating complete C-code for the entire user file contents, for simple linking into a project.

Finally, the additional flexibility offered by embedding a user file collection into a single
µFileSystem file has been demonstrated, allowing deleting and updates of the complete user
files. This embedded user file collection can reside either in internal or external SPI FLASH.

Modifications:

V0.00 8.4.2009: Initial draft – work in progress.

V0.01 27.5.2009: FTP and additional use examples. Not officially released.

V0.02 26.6.2009: Add embedded user files and uTaskerFileCreate.exe.

V0.03 29.9.2010: Add new uTaskerFileCreate.exe options to allow files without extensions
and embedded XML? commands

