

uTasker_utFAT.doc/V2.00 Copyright © 2014 M.J.Butcher Consulting

Embedding it better...

µTasker Document

µTasker – utFAT2.0

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 2/65 11.7.2014

Table of Contents

1. Introduction ..4

2. Electrical Connection to the SD card in SPI Mode ..7

3. SPI Mode of Operation ...9

4. SD Mode of Operation .. 10

5. SD Card Initialisation Phase ... 12

6. SD Card Disk Mounting ... 13

7. First Steps with an SD Card and Understanding FAT32 .. 16

7.1. Checking the Details of a Non-Formatted SD Card ... 17

7.2. Formatting or Re-formatting an SD Card .. 18

7.3. Displaying the Content of a Freshly Formatted SD Card 21

7.4. Creating a New Directory .. 25

7.5. Creating a New File ... 27

8. FTP Server and µtFAT ... 30

9. HTTP Server and µtFAT .. 30

10. Working with the µtFAT User Interface ... 31

11. µtFAT Application User Interface .. 34

11.1. utAllocateDirectory() .. 34

11.2. utOpenDirectory() ... 35

11.3. utChangeDirectory() ... 36

11.4. utOpenFile() .. 37

11.5. utTruncate() .. 39

11.6. utSeek() ... 40

11.7. utWriteFile() .. 41

11.8. utRenameFile() ... 42

11.9. utDeleteFile() .. 43

11.10. utSafeDeleteFile() ... 44

11.11. utReadFile()... 45

11.12. utCloseFile() .. 46

11.13. utMakeDirectory() ... 46

11.14. utLocateDirectory() ... 47

11.15. utListDir() ... 48

11.16. fnGetDiskInfo() .. 49

11.17. utFreeClusters() .. 50

11.18. utFormat() .. 51

11.19. utReadSector() .. 52

11.20. utWriteSector() .. 52

12. µtFAT File Management .. 53

13. Long File Name Support .. 53

13.1. Brief History of Long File Names .. 54

13.2. LFN Entries ... 56

13.3. Deleting LFN Entries .. 58

13.4. Renaming LFN Entries .. 58

13.5. Creating new LFN Entries ... 60

14. Data Caching and Speed Optimisations .. 61

15. Expert Functions .. 62

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 3/65 11.7.2014

16. Conclusion ... 64

17. Disclaimers .. 65

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 4/65 11.7.2014

1. Introduction

µtFAT V2.0 is a FAT16/32 compatible file system for use with V2 SD cards [Secure Digital]
and HCSD cards [Secure Digital High Capacity]. It uses the SPI mode of these cards to allow
any supported processor with an SPI interface to be used to read and write data, whereby a
single file can be up to 4 GByte in size and the total storage space from typically 2 GByte to
32 GByte, but up to 2TByte possible (with 512 byte sector size). When the supported
processor has an SDIO (SDHC) controller this is generally supported too as a more efficient
method of data transfer.

The user interface is designed to be practical and comfortable (encapsulating typically
required detail work like displaying directory contents). The code is designed for minimum
RAM requirements (from about 600 Bytes for a single user interface).

µtFAT is (optionally) fully integrated into the µTasker HTTP and FTP servers and a user
interface (DOS-like) is included in the µTasker project for simple test and study. Furthermore
µtFAT and SD cards can be used and tested within the µTasker simulator, allowing
comfortable project development and testing as well as greatly simplified study of the
software.

Optionally, µtFAT can read and write long file names (LFN). It can optionally format disks,
create, rename and delete directories and files, plus write file content..

µtFAT neither supports FAT12 nor V1 SD cards nor MMCs. Due to the fact that it is
becoming increasingly difficult to purchase SD cards rather than HCSD cards the smaller,
older ones are considered legacy devices - µtFAT V2.0 arrives at the time when it makes
sense to concentrate fully on present-day technology.

A single SD card is supported (it is generally referenced as disk D:\) with either no partition

or a single partition. The module is however prepared for extension to multiple partitions if
this proves to make sense during further development.

Since SD cards are removable the µtFAT module includes automated support for detecting
and mounting them so that the user doesn’t need to be involved with these details. When the
SD card is not detected the internal file system can fall back to the µFileSystem so that the
web server, for example, can still display information about the fact that there is no media
present and can still allow embedded applications to operate using the fall-back interface if
required.

The µtFAT module thus incorporates the following elements:

- SD card interface in SPI mode and/or SDIO (SDHC) controller mode (when supported by the
processor in use)

- FAT16/32 with optional long file name (LFN) support. When LFN writing is enabled it can use
full LFN compatibility or Linux work-around mode to avoid patent issues.

- Memory management interface controlling automated detection and mounting of the SD card
and enabling supervision of file protection and sharing

- Simplified user interface incorporating a variety of standard tasks like listing directories

- Optional data cache on a per-file basis to optimise access speed in case of small data
reads/writes

- Full integration into µTasker HTTP and FTP servers with fall-back capability to µFileSystem in
internal FLASH or external SPI FLASH

- Optional utFAT expert mode allowing analysis of file object storage, corruptions and deleted
content

- Optional safe deletion and undelete functions

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 5/65 11.7.2014

The demo project include a DOS-like interface via UART, USB CDC or TELNET allowing
management of files and directories as well as study of the µtFAT module and FAT16/32 in
general.

This document has the following goals:

- To present the µtFAT user interface so that it can be effectively used in µTasker
projects

- To discuss the relevant details of SD cards operation when used in µTasker projects
with the µtFAT

- To discuss the relevant details of FAT16/32 so that users of µtFAT and the µTasker
project fully understand its underlying operation. In addition to serve as a study aid
when learning about FAT16/32 operation, especially when working together with the
µTasker simulator and its SD card simulation capabilities

- To discuss the relevant details about file management (sharing and protection) in a
multi-user embedded system with real-time demands

- To highlight implement details to fulfil long file name write operations

The following references serve as basis for SD card and FAT16/32 specifications:

- SD-Association – Part 1 - Physical Layer Simplified Specification:
https://www.sdcard.org/downloads/pls/

- Microsoft Extensible Firmware Initiative FAT32 File System Specification:
http://www.microsoft.com/whdc/system/platform/firmware/fatgen.mspx

There are many additional sources for information available in the Internet so this document
restricts details to thise of relevance to the use of the µtFAT module.

At the time of writing the µtFAT module has been tested together with the µTasker demo
project on the following processors (on various evaluation and demo boards):

• ATMEL AT91SAM7X

• ATMEL AVR32 UC3A, UC3B and UC3C

• Freescale M522XX and Kinetis KE, KL, K (SPI and SDHC)

• Luminary Micro (TI) LM3Sxxxx

• NXP LPC2XXX (SPI and SDIO) and LPC17XX

• ST STR91XF and STM32 (SPI and SDIO)

A complete project including full options (command line interface via USB, UART and
TELNET with DOS-like µtFAT menu), TCP/IP with HTTP, FTP servers, TELNET, etc. and
USB CDC occupies around 70k code space and 30k RAM on an ARM processor, whereby
the µtFAT module contributes around 10k code and 1k RAM. The complete project on a
Coldfire occupies, in comparison, about 100k code space and 30k RAM whereby the µtFAT
module contributes about 16k code and 1k RAM.

The reference project supports formatting SD cards, copying data to the card via FTP,
serving web server content up to the capacity of the SD card as well as dynamic content
generation, fall back to the µFileSystem when no SD card is inserted as well as the complete
functionality of the µTasker V1.4 project.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 6/65 11.7.2014

This document uses FAT32 as basis for discussions. FAT16 is optionally supported and
details that vary in comparison with FAT32 are given mainly as foot-notes to the FAT32
descriptions.

FAT16 support can be optionally enabled with the define

#define UTFAT16

The full list of project defines are:

#define SDCARD_SUPPORT // enables SD card with utFAT

#define SD_CARD_RETRY_INTERVAL 5 // attempt SD card initialisation at 5s

 intervals

#define UT_DIRECTORIES_AVAILABLE 5 // this many directories objects are available

 for allocation

#define UTMANAGED_FILE_COUNT 10 // allow this many “managed files” at one time

#define UTFAT_LFN_READ // enable long file name read support

#define MAX_UTFAT_FILE_NAME (100) // the maximum file name length supported (LFN)

 - maximum 255

#define UTFAT_WRITE // enable write functions

#define UTFAT_FORMATTING // enable formatting SD cards (requires also

 UTFAT_WRITE)

#define UTFAT_FULL_FORMATTING // enable formatting SD cards including zeroing

 of data sectors as well as FAT sectors

#define UTFAT_LFN_DELETE // support deleting files with LFN

 (cleaning up all LFN directory entries) when

 LFN write is not enabled

#define UTFAT_LFN_WRITE // enable LFN write functions

#define UTFAT_LFN_WRITE_PATCH // enable LFN write functions based on Linux

 patch to potentially avoid possible patent

 issues

#define SFN_ENTRY_CACHE_SIZE 20 // short file name cache used to speed up SFN

 alias collision searching when writing LFNs

#define UTFAT_SAFE_DELETE // delete operation removes all information so

 that no undelete is possible

#define UTFAT_UNDELETE // undelete support for files and directories

#define UTFAT16 // support FAT16 as well as FAT32

#define UTFAT_FILE_CACHE_POOL 2 // file data cache buffers in the pool

#define UTFAT_EXPERT_FUNCTIONS // enable additional functions for monitoring

 operation and performing advanced operations

#define SUPPORT_FILE_TIME_STAMP // when activated, fnGetLocalFileTime() must

 exist, which return the date and time

 information

#define SD_CONTROLLER_AVAILABLE // set when SDIO/SDHC controller available and

 is to be used instead of SPI

#define UTFAT_SECT_BIG_ENDIAN // display sector content as big-endian view on

 little-endian processors or when simulating

#define UTFAT_SECT_LITTLE_ENDIAN // display sector content as little-endian view

 on big-endian processors

Important: Please read the disclaimers at the end of this document. The use of the
µtFAT module implies their acceptance in their entirety.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 7/65 11.7.2014

2. Electrical Connection to the SD card in SPI Mode

A standard SD card measures 32 mm × 24 mm × 2.1 mm and has 9 pins as show in figure 2-
1.

Figure 2-1 Standard SD card pin numbering

The pins use in SPI mode are detailed in table 2-1

Pin Name Direction Description
1 CS Input Chip Select
2 DI Input (push-pull) Data In
3 VSS - Supply voltage

ground
4 VDD Power input Supply voltage
5 SCLK Input Clock
6 VSS2 - Supply voltage

ground
7 DO Bi-directional

(push-pull)
Data Out

8 RSV
9 RSV

Table 2-1 SD card pin descriptions in SPI mode

Connecting an SD card to any processor with an SPI interface is very easy since it involves
connecting the standard SPI signals (MISO, MOSI and SPCLK) and a single chip select line
along with power of typically 3V3. Some designs will allow the processor to turn on and off
the power to the SD card so that it can be powered down during insertion and removal and to
save power consumption when not used. Due to the design of the contacts to the SD card it
is however generally not a problem to insert and remove with power applied (hot-plugging).

The communication and control signals are thus simply 4 wires as follows:

• Pin 1 – CS – CS-line (output processor port asserted ‘0’ to enable the SD card)

• Pin 2 – DI – MOSI (from the SPI interface of the processor)

• Pin 4 – SCLK – SPCLK (from the SPI interface of the processor)

• Pin 7 – DO – MISO (from the SPI interface of the processor)

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 8/65 11.7.2014

A further popular format is the microSD/microSDHC format which measures only 15 mm x
11mm x 1mm. Its popularity is mainly due to its acceptance by mobile handset vendors
because of its ultra-compact size and widely supported standard SD interface. These can
also be used in SD card sockets together with an adapter. They have only 8 pins as shown in
SPI mode in table 2-2

Pin Name Direction Description
1 NC - No contact
2 CS Input Chip select
3 DI Input (push-pull) Data In
4 VDD Power input Supply voltage
5 SCLK Input Clock
6 VSS - Supply voltage

ground
7 DO Bi-directional

(push-pull)
Data Out

8 RSV

Table 2-2 microSD card pin descriptions

The communication and control signals are thus simply 4 wires as follows:

• Pin 2 – CS – CS-line (output processor port asserted ‘0’ to enable the SD card)

• Pin 3 – DI – MOSI (from the SPI interface of the processor)

• Pin 5 – SCLK – SPCLK (from the SPI interface of the processor)

• Pin 7 – DO – MISO (from the SPI interface of the processor)

1

8

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 9/65 11.7.2014

3. SPI Mode of Operation

Since almost every processor has an SPI interface the SPI mode is the most important mode
for general embedded operation. SD-modes of operation include (in addition to SPI mode) 1-
bit and 4-bit modes, which involves four data lines and requires the processor to have an
SD/MMC interface; this allows greater data throughput to be obtained but is not generally
necessary.

It is possible that not all HCSD cards will support the SPI mode in the future, which may
restrict the SPI use on higher capacity devices, however the SPI interface is not expected to
generally die out since it certainly enables the simplest and cheapest interface using general
purpose processors, which will continue to be of importance also in the years to come.

The SPI mode is not the default mode of operation and must be forced by applying the
following procedure:

• Once the SD card is powered (at least 1ms after its input voltage reaches 2V2) the DI
and CS lines are held high and at least 74 clock pulses (100kHz to 400kHz) are
applied to SCLK.

• The SD card has now entered its native command mode.

• With the clock speed set between 100k and 400k a software reset is commanded
using the GO_IDLE_STATE (CMD0) command (with valid CRC). The command is

issued with CS line low, causing the card to enter SPI mode.

The GO_IDLE_STATE is an example of an SD card command – the complete set of

commands is included in the SD-Association – Part 1 - Physical Layer Simplified
Specification. Not all commands are required in order to realise the interface.

To issue this command (generally true for all SD card commands) the following procedure is
used:

1) The SPI bus is read to ensure that the card is ready to receive commands. This is
indicated by the value 0xff being read from the bus (note that if no SD card is inserted
the bus state may be detected as 0xff or 0x00 depending on whether the DI line is
pulled up or not).

2) If the SPI bus is not reading 0xff the card may be busy so the driver software is
required to allow the SD card some time to complete.

3) SD card commands are 6 bytes in length, whereby the GO_IDLE_STATE consists of

the fixed content 0x40, 0x00, 0x00, 0x00, 0x00, 0x95. The first byte is the

command; the command is also known as CMD0 (the actual command value is equal
to 0x40 + CMD number) and the final byte (0x95) is a checksum over the command
length. The GO_IDLE_STATE command has not parameters and the 4 x 0x00 are

stuff-bytes. Since the command has always the same content its checksum is always
the same.

4) After transmission of the 6 byte command the result is read from the SD card. It is
also possible (depending on command type) that the SD card requires some time to
complete the command and it will indicate this by the most significant bit of the result
value (0x80). The driver software should wait until the SD card no longer indicates
that it is busy (by polling the result value) before it can return the actual result from
the executed command.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 10/65 11.7.2014

5) The GO_IDLE_STATE command will return the SD card’s state which is expected to

be the IDLE state (value 0x01). Some commands return a result plus extra
information which is read by subsequently read bytes; for example, the command 58
returns the Operations Condition Register (OCR), containing 4 additional bytes of
data.

The SPI mode must be set so that the clock and data have the format as shown in figure 3-1.
This is 8-bit MOTOROLA mode with clock phase set so that the MOSI data changes on the
falling edge of the SPCLK.

ls
b

CS

SPCLK

MOSI

MISO

Check that the SD card

is ready

0x40 - CMD0 4 x 0x00 0x95 - checksum
Read result

0xff - SD card busy

Read result

0x01 - OK

m
s
b

 Figure 3-1 Example of SPI mode command – CMD0

4. SD Mode of Operation

The pin-out of the SD card in SD (4-bit) mode is detailed in table 4-1.

Pin Name Direction Description
1 CD/DAT3 Bi-directional

(push-pull)
Card Detect/Data 3

2 CMD Input Command in
3 VSS - Supply voltage

ground
4 VDD Power input Supply voltage
5 CLK Input Clock
6 VSS2 - Supply voltage

ground
7 DAT0 Bi-directional

(push-pull)
Data 0

8 DAT1 Bi-directional
(push-pull)

Data 1

9 DAT2 Bi-directional
(push-pull)

Data 2

Table 4-1 SD card pin descriptions in SD mode

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 11/65 11.7.2014

The pin-out of the microSD card in SD (4-bit) mode is detailed in table 4-2.

Pin Name Direction Description
1 DAT2 Bi-directional

(push-pull)
Data 2

2 CD/DAT3 Bi-directional
(push-pull)

Card Detect/Data 3

3 CMD Input Command in
4 VDD Power input Supply voltage
5 CLK Input Clock
6 VSS - Supply voltage

ground
7 DAT0 Bi-directional

(push-pull)
Data 0

8 DAT1 Bi-directional
(push-pull)

Data 1

Table 4-2 microSD card pin descriptions in SD mode

The most important difference between SPI mode and SD mode is that the SD mode
supports 4-bit data mode. The initialisation phase operates in 1-bit mode and the bus width is
commanded to 4-bit during the initialisation sequence.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 12/65 11.7.2014

5. SD Card Initialisation Phase

The initialization of the SD card is managed by the mass-storage task. This task is activated
in the µTasker project from the application task using the command:

uTaskerStateChange(TASK_MASS_STORAGE, UTASKER_ACTIVATE);

The mass storage task realises a state-event machine which will attempt to initiate the SD
card. If the initialization fails (probably due to the SD card not being inserted) it will retry at
regular intervals as defined by:

#define SD_CARD_RETRY_INTERVAL 5 // attempt SD card initialisation at 5s intervals

The initialization involves forcing the SD card to the SPI mode (if SPI is used) as described in
the previous section, followed by reading and checking the SD card type and attributes – at
least a V2 SD card is expected for the card to be accepted for further operation. Typical
sequences are described in the SD-Association – Part 1 - Physical Layer Simplified
Specification.

During the initialisation sequence the state-event machine also allows cards to respond
slowly by interrupting polling to allow other tasks in the system to be scheduled. This is also
important when a card is not present and enough time is being given before declaring the
initialisation attempt as failed. The process thus behaves as a background activity and
doesn’t impact general system operation even when the initialisation is attempted at regular
intervals.

Once all information about the card has been retrieved and checked for validity the SPI
interface speed is increased from the initial 300kHz to the higher operating speed of up to
25MHz. The speed increase is also valid for SDIO (SDHC) mode, whereby the data bus
width is also changed for the default 1-bit mode to 4-bit mode.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 13/65 11.7.2014

6. SD Card Disk Mounting

Once the SD card initialisation has completed the mounting phase begins. This is also
performed automatically by the mass storage task’s state-event machine as a background
activity.

It starts by reading the first sector on the SD card in an attempt to identify an existing FAT32
formatted card. This sector is known as the boot sector, containing a BIOS parameter block,
but it may turn out that it is not such a sector but instead is an extended boot record
supplying information about partitions on the disk – this detail is in fact missing from the
Microsoft FAT32 File System Specification.

Before looking at the content of such sections it is worth noting that an SD card section is
accessed by first issuing the SD card command 17 (READ_SINGLE_BLOCK_CMD17) followed

by reading 512 bytes of data from the specified sector. The sector size is always 512 bytes
and this is the block size used when reading and writing. The command
READ_SINGLE_BLOCK_CMD17 includes also a parameter containing the sector which is to

be read, which can be a sector number (HCSD cards) or a byte offset (SD cards) – this detail
is controlled in the driver based on information concerning the type of SD card being used
which was obtained during the initialisation phase.

The 512 bytes read can then be interpreted. Both an extended boot record and a BIOS
parameter block contain a check pattern of 0x55 and 0xaa as last two bytes of the sector,
which is used as a first simple check that the sector’s content is valid. If this is not the case
the SD card is not formatted in any recognisable way and so cannot be mounted. It must
then either be formatted in a formatting device (like in an SD card slot in a PC) or by
commanding the formatting if the µtFAT formatting support option is enabled.

The two possible valid sector content types are compared below.

typedef struct _PACK stEXTENDED_BOOT_RECORD

{

 unsigned char EBR_unused1[394]; // generally 0

 unsigned char EBR_IBM_menu[9]; // possible IBM boot manager menu entry

 unsigned char EBR_unused2[43]; // generally 0

 PARTITION_TABLE_ENTRY EBR_partition_table[2]; // two partition tables

 unsigned char EBR_unused3[32]; // generally 0

 unsigned char ucCheck55; // this location must be 0x55 - offset 510

 unsigned char ucCheckAA; // this location must be 0xaa - offset 511

} EXTENDED_BOOT_RECORD;

Code 6-1 Sector content when extended boot record

where each partition table entry is:

typedef struct stPARTITION_TABLE_ENTRY

{

 unsigned char boot_indicator; // 0x80 indicates bootable

 unsigned char starting_cylinder; // cylinder start value

 unsigned char starting_head; // head start value

 unsigned char starting_sector; // sector start value

 unsigned char partition_type; // partition type descriptor

 unsigned char ending_cylinder; // cylinder start value

 unsigned char ending_head; // head start value

 unsigned char ending_sector; // sector start value

 unsigned char start_sector[4]; // start sector

 unsigned char partition_size[4]; // partition size in sectors

} PARTITION_TABLE_ENTRY;

Code 6-2 Partition entry table content

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 14/65 11.7.2014

typedef struct _PACK stBOOT_SECTOR_FAT32

{

 BOOT_SECTOR_BPB boot_sector_bpb; // standard boot sector and bios parameter block

 unsigned char BPB_FATSz32[4]; // FAT32 32-bit count of sectors occupied by ONE FAT -

 BPB_FATSz16 must be zero!

 unsigned char BPB_ExtFlags[2];

 unsigned char BPB_FSVer[2]; // version number of the FAT32 volume. major:minor -

 0:0 expected at the time of writing but could

 change in the future indicating changes

 unsigned char BPB_RootClus[4]; // cluster number of the first cluster of the root

 directory. Usually 2

 unsigned char BPB_FSInfo[2]; // sector number of FSINFO structure in the reserved

 area of the FAT32 volume. Usually 1

 unsigned char BPB_BkBootSec[2]; // sector number in the reserved area of the volume of

 a copy of the boot record (if non-zero). 6 is

 recommended

 unsigned char BPB_Reserved[12]; // should be 0

 unsigned char BS_DrvNum; // int 0x13 drive number - operating system specific

 unsigned char BS_Reserved1; // should always be set to zero when formatting (is in

 fact used by Windows NT)

 unsigned char BS_BootSig; // extended boot signature (0x29). Signature indicating

 that the following three fields are present

 unsigned char BS_VolID[4]; // volume serial number. Usually generated by simply

 combining the current date and time into a 32-bit

 value

 CHAR BS_VolLab[11]; // label matching the 11-byte volume label recorded in

 the root directory. "NO NAME " when no specific

 label

 CHAR BS_FilSysType[8]; // always "FAT32 ". Not actually used to determine

 type (more informational) and not used at all by

 Microsoft FAT

 unsigned char ucSpace[420];

 unsigned char ucCheck55; // this location must be 0x55 - offset 510

 unsigned char ucCheckAA; // this location must be 0xaa - offset 511

} BOOT_SECTOR_FAT32;

Code 6-3 Sector content when FAT32 boot sector

where the boot sector and BIOS parameter block content is:

typedef struct stBOOT_SECTOR_BPB // boot sector and bios parameter block

{

 unsigned char BS_jmpBoot[3]; // jump instruction to boot code

 CHAR BS_OEMName[8]; // string usually indicating the system that formatted

 the volume - "MSWIN4.1" is recommended although

 MSDOS5.0 is typical

 unsigned char BPB_BytesPerSec[2]; // count of bytes per sector. This value may take on

 only the following values: 512, 1024, 2048 or 4096

 unsigned char BPB_SecPerClus; // number of sectors per allocation unit. The legal

 values are 1, 2, 4, 8, 16, 32, 64, and 128 – however

 never cause a "bytes per cluster" value

 (BPB_BytesPerSec * BPB_SecPerClus) greater than 32K!!

 unsigned char BPB_RsvdSecCnt[2]; // number of reserved sectors in the reserved region of

 the volume starting at the first sector of the

 volume. Never 0. FAT12/16 always 1. FAT32 uses

 typcially 32

 unsigned char BPB_NumFATs; // the count of FAT data structures on the volume.

 Recommended to be always 2 (although FLASH could use

 1)

 unsigned char BPB_RootEntCnt[2]; // FAT12 and FAT16 volumes count of 32-byte directory

 entries in the root directory. FAT32 must always be

 0. FAT16 should use 512. When multiplied by 32 it

 should result in an even multiple of BPB_BytesPerSec

 (for FAT12 and FAT16)

 unsigned char BPB_TotSec16[2]; // old 16-bit total count of sectors on the volume (in

 all four regions of the volume). May be zero is

 BPB_TotSec32 is non-zero. Must be 0 for FAT32

 unsigned char BPB_Media; // 0xF0, 0xF8, 0xF9, 0xFA, 0xFB, 0xFC, 0xFD, 0xFE, or

 0xFF. 0xF8 usually used for fixed and 0xF0 for

 removable media. Should match with FAT[0] entry but

 is otherwise obsolete

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 15/65 11.7.2014

 unsigned char BPB_FATSz16[2]; // FAT12/FAT16 16-bit count of sectors occupied by ONE

 FAT. Must be 0 for FAT32

 unsigned char BPB_SecPerTrk[2]; // sectors per track for interrupt 0x13. Only valid for

 media whose volume is broken down into tracks by

 multiple heads and cylinders

 unsigned char BPB_NumHeads[2]; // number of heads for interrupt 0x13.

 unsigned char BPB_HiddSec[4]; // count of hidden sectors preceding the partition that

 contains this FAT volume. Should always be zero on

 media that are not partitioned but otherwise

 operating system dependent

 unsigned char BPB_TotSec32[4]; // 32-bit total count of sectors on the volume (all

 sectors in all four regions). Can be zero if

 BPB_TotSec16 is non-zero. Must be non-zero for FAT32

} BOOT_SECTOR_BPB;

Code 6-4 Boot sector and BIOS parameter block

It is fairly easy to recognise an extended boot record because there is partition information
available where a FAT32 boot sector would normally have zeros. In addition, the FAT32 boot
sector would have the string FAT32 at the location BS_FilSysType.

The µtFAT V2.0 will use just use the first partition if one is found. The partition entry
parameter start_sector[4] indicates the location of the boot sector to be used. FAT32

uses little-endian format for storage so the sector to be read to load the boot sector (which
would already be loaded if there were no extended boot record used) is given by:

ulSector = ((start_sector[3] << 24) + (start_sector[2] << 16) +

 (start_sector[1] << 8) + start_sector[0]);

in order to ensure that the long word value is correct irrespective of the processor
architecture being used.

After reading this sector (remembering that a sector is always 512 bytes in length), the
FAT32 boot sector can be interpreted as the mounting process is continued. The content of
the FAT32 boot sector is interpreted to define various parameters to verify that it is indeed
FAT32 formatted and for later operational use. These details are not very complicated but
there are quite a lot of values; some of which were important for floppy drives but no longer
of much relevance, and others which are essential for correct operation later. It takes some
experience with the values before they start making much sense and it is not the objective of
this document to explain what they all mean and exactly how each one can be used, or
ignored depending on their significance. Instead, rather than getting bogged down with
details it is a good point to move on to a more practical study approach which should help in
understanding how this encrypted information is put to use during FAT32 operation.

Therefore it is adequate to state a few small details for the moment so that the next stage
can already begin:

1) If the cluster count is smaller than 65525 it is not FAT32 and is probably FAT16. It is
possible that some SD cards are formatted per default as FAT16 although they could
be formatted as FAT32 – also Windows may format a 2G SD cards as FAT16 if the
FAT32 option is not specifically set. Such SD-cards can however be reformatted
accordingly.

2) Once all information has been collected from the FAT32 boot section and is valid the
mounting phase is complete. From this point on the SD card can be used.

3) To find out important details about the SD card and its FAT32 configuration the “Disk

Interface” menu of the µTasker demo project can be used. In addition, the

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 16/65 11.7.2014

contents of SD card sectors can be displayed so that the internal workings soon
become quite clear.

4) The µtFAT V2.0 includes an SD card simulator. The simulator can also be used to
perform the same tests as with a real SD card on target hardware with the advantage
that it is faster (reformatting a real 2G SD card may take several minutes, but the
simulator allows it to be tested in about 2 seconds), doesn’t involve modifying real
content and also allows comfortable debugging (code stepping) for anyone interested
in the internal workings of the µtFAT module, including SPI or SDIO (SDHC) driver.
The size of the SD card used when simulating can be defined by the define
#define SDCARD_SIM_SIZE SDCARD_SIZE_2G

This would cause the simulator to work as a virtual 2 GByte card but sizes of 1G, 2G,
4G, 8G and 16G are supported.
The content of the simulated SD card is saved in the simulator directory as
SD_CARD.bin. Changes are immediately made in this file and it is not stored only on

exit from the simulator as is internal flash.
If no SD card size is specified the SD card simulator defaults to a 1GByte card.
Should the user want to simulate the project without an SD card inserted initially the
define
#define _NO_SD_CARD_INSERTED

can be used. A simulator card can be inserted later by clicking on the SD card symbol
in the simulator.

7. First Steps with an SD Card and Understanding FAT32

An SD card can be in one of 5 possible states

• Not present – in this case it is not usable until inserted

• Inserted but not formatted – in this case it cannot yet be used and must first be
formatted

• Mal-formatted – this could be due to an error or because its formatting is not FAT32
or FAT16 (when the FAT16 option is enabled). In this case it needs to be reformatted

• FAT32 formatted and completely empty – in this case it is in a fresh state with no
directories or files and also no traces of old directories and files (which can often be
recovered quite easily – eg. undeleted)

• FAT32 formatted with data – in this case it contains directories and/or files and
probably also traces of deleted directories and files

We will start with an inserted but not formatted 2 GByte SD card and work through formatting
it and then using it to store data on. This can be performed by starting with a non-formatted
card on a target board loaded with the µTasker demo project including the µtFAT module or
else by running the µTasker simulator. Apart from some possible differences in reaction time
the results should be identical; the following assumes that the µTasker simulator is used and
gives some extra details concerning this where necessary – the simulator details can be
ignored if only target operation is of interest.

This is where things get practical and the rather brief but intensive details of the last sections
should quickly fall into place so that the module starts to become rather more fun!

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 17/65 11.7.2014

7.1. Checking the Details of a Non-Formatted SD Card

To do this a non-formatted SD card is required. If no such card is available it is not a problem
since this step is rather academic and can be skipped if needed.

When using the simulator a non-formatted SD card can simply be created by ensuring that
the file SD_CARD.bin in the simulation directory

\Applications\uTaskerV1.4\Simulator either doesn’t exist or is deleted. When the

µtFAT module runs in the µTasker simulator environment it is this file which is used to store
all SD card data in – when it is empty there is no data and also no boot sector information.

Connect to the menu interface either via UART or TELNET (USB CDC can also be used on a
target but UART or TELNET are more suitable for simulator operation). Now enter the “SD
card disk interface” where the following commands are displayed (depending on project
options some additional commands may also be displayed):

 Disk interface

===================

up go to main menu

info utFAT/card info

dir [path] show directory content

cd [path] change dir. (.. for up)

file [path] new empty file

write [path] test write to file

mkdir new empty dir

rename [from] [to] rename

print [path] print file content

del [path] delete file or dir.

format [-16] [label] format (unformatted) disk

re-format [-16] [label] reformat disk!!!!!

sect [hex number] display sector

help Display menu specific help

quit Leave command mode

Terminal 7-1 Disk Interface Menu

Since there is no formatted SD card available any attempt to perform file system operation,
like “DIR” will result in a message “No SD-Card ready”. As long as an SD card is however

inserted (which is the default case when simulating) its information will have been read and
so the “info” command will work as below:

SD-card not formatted (1977614336 bytes)

CSD: 0x00 0x26 0x00 0x32 0x5f 0x5a 0x83 0xae 0xfe 0xfb 0xcf 0xff 0x92 0x80 0xff 0x00

Terminal 7-2 “info” command response from an unformatted SD card

This is showing that the SD card is not formatted but has about 2 GByte of usable space. In
addition, its CSD (Card Specific Data) register is displayed. This contains various details
about the card including its space, speed etc. - see chapter 5.3 of the SD-Association –

Part 1 - Physical Layer Simplified Specification for complete details

concerning interpreting these values.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 18/65 11.7.2014

7.2. Formatting or Re-formatting an SD Card

A non-formatted SD card can be formatted in a PC but, as long as the options UTFAT_WRITE

and UTFAT_FORMATTING are set, it can also be formatted by the µtFAT module. To do this

the command “format” is used; to re-format a formatted SD card the command “re-

format” achieves the same result. WARNING: content will be lost when this command

is used – that is the reason why the command “re-format”, with hyphen, was chosen!!

Formatting a real SD card can take several minutes since it involves writing a large amount
of data space – when simulating it takes about 2 seconds. The formatting take place by
writing the partition information and boot sector information accordingly as well as resetting
all FAT32 content. In addition, a volume label can be passed with the formatting command
(up to 11 characters in length) which will be displayed when the SD card is inserted into a
PC. The following shows the formatting command and the response to a subsequent “info”

command, where the volume ID is also visible:

>format UTFAT

Formatting in progress - please wait...

>**Disk D formatted

Disk D mounted

info

SD-card UTFAT (1977614336 bytes)

Bytes per sector: 512

Cluster size: 4096

Directory base: 0x00000002

FAT start: 0x0000005f

FAT size: 0x00000eb9

Number of FATs: 2

LBA: 0x00001dd1

Total clusters: 0x00075a45

Info sect: 0x00000040

Free clusters: 0x00075a44

Next free: 0x00000003

CSD: 0x00 0x26 0x00 0x32 0x5f 0x5a 0x83 0xae 0xfe 0xfb 0xcf 0xff 0x92 0x80 0xff

0x00

>

Terminal 7-3 “info” command response from a formatted SD card

Note that the formatting process is controlled by the mass-storage task in a manner that it
can operate as a background process during normal system operation.

• If the project option

#define UTFAT_FULL_FORMATTING

Is enabled additional commands are available for formatting and reformatting card:
fformat and re-fformat

The use of these commands is the same as the format and re-format commands

but they stand for ‘full’ format and not only delete the FAT but also all content of the
cluster area to ensure that the complete SD card content is deleted. This process can
however take a long time to complete on a large SD card!

• If FAT16 is enabled, a card can be formatted with FAT16 by using the optional [-16]

flag format -16 [optional label]

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 19/65 11.7.2014

Before turning our attention to FAT32 and the meaning of the information contained here,
some details from the previous sections can be quickly verified. By using the command
“sect” the content of physical sectors on the SD card can be displayed. The µtFAT

formatting uses a single partition so the first sector should contain an extended boot record –
which can be verified by commanding “sect 0”

>sect 0

Reading sector 0x00000000
 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x02000000

 0x380b000c 0x003fb8f8 0xefc10000 0x0000003a 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0xaa550000

Terminal 7-4 Content of sector 0 (extended boot record)

In fact the display is of 8 rows of 16 long words (512 bytes in all) but here it has been broken
down into 16 rows of 8 long words to make it fit better on the page. Apart from being aware
that the values are displayed in long words in accordance to the architecture of the processor
actually being run on (this is a little-endian view – a big-endian processor would display the

last long word as 0x000055aa, for example) there is no further relevance in displaying them
like this for this sector’s content; later however we will see that it is the natural display when
interpreting FAT32 content so that is why this format was chosen generally.

If you would prefer to have the display in little-endian style when using a big-endian

processors the define UTFAT_SECT_LITTLE_ENDIAN can be set.Alternatively the display
can be set to big-endian style when using a little-endian processor or simulator using the

define UTFAT_SECT_BIG_ENDIAN.

Here we see that there is not a great deal of content in this sector – a lot of zeros. Important
is however that the last two bytes have the 0x55 0xaa pattern, indicating that the content is
valid. Looking more closely at the partition information, and in particular at the value of the
sector where the boot sector belonging to this partition can be found, the value 0x0000003f

can be made out (note that this is not that obvious since the locations are not on a long word
boundary in the sector but the value is indeed so). The few values in the sector which are of
interest to us are highlighted above.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 20/65 11.7.2014

Remembering that this partition information is just telling us where we find out boot sector we
can repeat the display of the sector number 0x3f.

>sect 3f

Reading sector 0x0000003f

 0x4d9058eb 0x534f4453 0x00302e35 0x00200802 0x00000002 0x0000f800 0x00ff003f 0x0000003f

 0x003a9fc1 0x00000eb9 0x00000000 0x00000002 0x00060001 0x00000000 0x00000000 0x00000000

 0x9e290080 0x5553a74f 0x54414654 0x20202020 0x41462020 0x20323354 0x00002020 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0xaa550000

Terminal 7-5 Content of sector 0x3f (boot sector of the partition)

Again we can recognise that the content is marked as being valid (the 0x55 0xaa at the end
of the sector) and we can interpret the content in accordance to the FAT32 sector layout. The
result is that the numbers are telling us the size of the FAT32 area, where we find them and
some other details – most of which have been seen in the “info” command output.

Just three value are highlighted – the values 0x08, 0x200 and 0x00000eb9. These are the

values for BPB_SecPerClus, BPB_BytesPerSec[2] and BPB_FATSz32[4], whereby

BPB_BytesPerSec x BPB_SecPerClus is the cluster size used by the FAT32 (8 x 512 =

4k) and BPB_FATSz32 is the FAT32 size; that is 0xeb9 (3’769) sectors, meaning that about

2 MBytes is allocated to the FAT32 to manage the data on the disk. (In fact there are two
copies of the FAT32 making total disk space used by them to be about 4 MBytes).

The FAT32 information is however not yet the real topic but you should be able to identify the
bytes of information which are being used to extract various details about the formatted SD
card and also being used to calculate other parameters which will be used by the FAT32
software.

You may also have realised that the process of mounting our disk so that it is ready to be
used is in fact nothing more that finding and reading this sector on the SD card, followed by
interpreting a few bytes of information found there to calculate a few values as displayed by
the “info” command.

But now the SD card is ready for use and it is finally time to look at what FAT32 is really all
about!

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 21/65 11.7.2014

7.3. Displaying the Content of a Freshly Formatted SD Card

By entering the command “dir” the following is seen.

>dir

Directory D:\

0 files with 0 bytes

0 directories, 1973698560 bytes free

D:\>

Terminal 7-6 “dir” display of empty SD card

The SD card is being displayed as disk D:\ but

contains neither directories nor files. This is to be
expected since the SD card has been freshly formatted
and we haven’t copied any data onto it yet.

Although there is no data present on the SD card there
is already a small amount of information in the FAT32
area which was used by the “dir” command to
determine that this is indeed the case. It is probably
also obvious that the FAT32 area is what is used by the
file system to manage the storage of data but it may not
be clear just where this information is and what the
difference is between this area and other areas on the
SD card. For this reason it may be useful to review
exactly what the disk area is used for since the
formatting has already divided it into logical areas
which are used for different functions. This is shown,
based on the reference SD card in figure 7.1.

We have already looked at the extended boot record
which informs us of where the boot sector is location
(sectors 0 and 0x3f). The boot sector content has then

specified that the FAT32 begins at sector 0x5f and is

0xeb9 sectors in size. It has in addition informed us

that there are two FAT32s (these are synchronised
copies in case one were be become corrupted,
although a single FAT32 would probably be adequate
on an SD card since it is not susceptible to the same
defects as floppy disks, for which this was originally
intended for).

After the 2 FAT32 areas the cluster area begins and
uses up almost all of the remaining space. This is
where the data will be stored – all data management,
on the other hand, is contained within the FAT32 area.

Boot Sector

Reserved Area

FAT1

FAT2

Clusters

(for directories and files)

Possibly small unused space

FAT Base Address

Start of data (LBA = 0)

Extended Boot Record0

0x3f

0x5f

0xf18

0x1dd1

0x75a45000

Figure 7-1 SD card sector utilisation

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 22/65 11.7.2014

There may be a few side questions at this point because there is an area at the start called
the reserved area – this is used for the boot sector but also contains (or can contain) other
special information. If you analysed the boot sector in more detail you would in fact have
found that there is also a copy of the boot sector 6 sectors after the original one. There is
also a special sector called the ‘info’ sector at sector 0x40 which can be used by FAT32 to
keep extra information about which clusters are free for use – due to the quite large size of
the cluster area it can save time when having to otherwise search for specific information.
Not all of the reserved area is however necessarily used.

The other burning question may be about how the formatter decided on using a cluster size
of 4k and a FAT32 size of 0xeb9 clusters. Other combinations may also be possible – for

example larger cluster sizes, with less FAT32 clusters and less FAT space requirement, or
smaller cluster sizes with more FAT32 clusters and greater FAT space requirement. The
answer is that it is a compromise based on a simple calculation recommended by Microsoft
in the FAT32 File System Specification. There are more details in the specification, even if a
little brash (basically it states something like – don’t bother trying to understand how it works
– just accept that we are right and use it – so that is what the µtFAT disk formatter does...).

Nevertheless it is interesting to understand the relationship between FAT32 size and cluster
size. A cluster is simply the smallest data space that can be allocated to any object (directory
structure or file data) so any object will be constructed of either 1 cluster or a multiple of
clusters. When a file is created with 1 byte content it is already occupying a cluster – in our
example that is 4k of disk space; if a smaller cluster size were used it would occupy less,
whereas if a larger cluster size were used it would occupy even more. Once this file’s content
grows to beyond a single cluster space it then starts to occupy a second cluster and can
grow by simply taking as many clusters as required.

Clusters occupied by an object are not necessary contiguous. They can effectively be
anywhere within the cluster space. It is the FAT32 area which contains information about
where the clusters belonging to an object are situated. In fact it requires one long word of
FAT32 space to manage one cluster (one half-word for FAT16), explaining why the FAT32
space needs to be larger when the cluster size is smaller (because it needs to be able to
track more individual clusters), and vice verse. If the cluster size is chosen too small it may
be quite efficient for small files since they will not need to occupy as much space but larger
files would need to occupy more clusters; the FAT32 would need to be larger since it has to
be able to manage these additional clusters – a limit may also be reached where the FAT32
can no longer manage the total amount of clusters which can exist in the physical SD card
memory. For this reason the compromise of 4k clusters and about 2 MByte FAT32, to allow
effective management of almost 2GByte cluster space, turns out to be quite realistic as the
following shows:

• The FAT32 size is 0xeb9 sectors in size (where a sector is 512 bytes).

• Therefore the FAT32 area is 0xeb9 x 0x200 (or 3’769 x 512) = 0x1d7200

(1’929’728) bytes in size.

• One long word (32 bits) in the FAT32 manages a single cluster (this is explained in
more below below), meaning that this FAT32 can manage 0x1d7200 / 4 =

0x75c80 (482’432) clusters.

• The cluster size is 4k so the cluster area that can be managed is 0x75c80 x 0x1000

= 0x75c80000 (1’976’041’472) bytes in size. It will be seen that usually the first 2

locations in the FAT32 are not used for cluster management, actually reducing the
size slightly by these 2 clusters.

• If we compare this with the total cluster value displayed by the “info” command there
is a discrepancy and it turns out that some of the clusters don’t physically exist (the
FAT32 could manage a few more than are available). The SD card has

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 23/65 11.7.2014

1’977’614’336 bytes available for use and the reserved area plus the FAT32s use

up 0x1dd1 sectors (0x3ba200 or 3’908’096 bytes), leaving 0x7545e00

(1’973’706’240) bytes for the cluster area. This makes 0x7404a (exactly

481’861.875) clusters in total for actual use. The 0.875 clusters (3’584 bytes) are
then in this case the unused bytes at the end of the SD card that couldn’t be allocated
to a cluster.

One additional point that is taken into account when dimensioning the FAT32 file system is to
ensure that no FAT32 volume be ever configured so that a cluster 0x0ffffff7 exists. This

is because this value is used to mark a bad cluster and so would cause a conflict (is it a bad
cluster or a cluster at that location... ?). Since our example only needs 0x7404a it will never

be able to cause such a conflict and is thus legal.

There is now nothing standing in our way of taking a first look at the content of the FAT32
area, so here it is:

D:\>sect 5f

Reading sector 0x0000005f

 0x0ffffff8 0xffffffff 0x0fffffff 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-6 Content of first FAT32 sector – disk empty

Note that the display is in fact 16 x 8 long words in size (512 byte sector size) which will turn
out to be useful as soon as cluster chains need to be followed.

All long words with the value 0x00000000 represent free space which can be used when

allocating clusters.

The first two long word values are standard entries which are described in the Microsoft
FAT32 File System Specification but otherwise of no significance to us. They are never used
but need to be there. The third long word 0x0fffffff is a FAT32 entry which is used by
the root directory. Although the disk is empty it always has a root directory – our root
directory is D:\ Note that the value 0x0fffffff means that the cluster is a single cluster –

later we will see how the FAT32 area manages cluster chains.

This is always the first cluster. Since it is however not the first occupied FAT32 entry it is
referred to as cluster 2. Cluster 2’s cluster location is the first cluster in the physical cluster
area, whose address is referred to as the LBA (Logical Base Address). The fact that cluster
entry 2 is in fact physical cluster 0 can be a little confusing and also explains why there is
often a conversion of -2 or +2 when translating between cluster entries and cluster
locations... The µtFAT module avoids the conversion difficulties by maintaining two base
address values; the ‘logical’ base address and the ‘virtual’ base address. The ‘logical’ base
address is used when working with sectors within a cluster, relative to where the cluster area
physically starts. The ‘virtual’ base address is used when working with clusters since it
automatically references it to two clusters before the physical cluster start and so avoids any
additional need to compensate for the unused cluster entries.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 24/65 11.7.2014

Since we now know that the root directory already has its own cluster entry we can take a
look at this too. It is situated at the very start of the cluster area (LBA) which starts at sector
0x1dd1 (see “info” command). Don’t forget that it does in fact occupy at least one cluster

space so its content is not sector 0x1dd1 alone but also the sectors up to and including

0x1dd9 (with 4k cluster size each cluster is made up of 8 sectors of each 512 byte size).

D:\>sect 1dd1

Reading sector 0x00001dd1

 0x41465455 0x00000054 0x08000000 0x92370000 0x40634063 0x92370000 0x00004063 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-7 Content of empty root directory

This sector’s content is now from the cluster area so has nothing to do with FAT32
management. Its content is described by a directory entry, consisting of 32 bytes. A single

directory can thus contain 128 entries (generally files or further directories) before its first 4k

cluster is fully occupied and a second cluster is required. The directory entry content is
shown below:

typedef struct stDIR_ENTRY_STRUCTURE_FAT32

{

 unsigned char DIR_Name[11]; // directory short name. If the first byte is 0xe5 the

 directory entry is free. If it is 0x00 this and all

 following are free. If it is 0x05 it means that the

 actual file name begins with 0xe5 (makes Japanese

 character set possible). May not start with ' ' or

 lower (apart from special case for 0x05) and lower

 case characters are not allowed. The following

 characters are not allowed: "0x22, 0x2A, 0x2B, 0x2C,

 0x2E, 0x2F, 0x3A, 0x3B, 0x3C, 0x3D, 0x3E, 0x3F, 0x5B,

 0x5C, 0x5D, and 0x7C

 unsigned char DIR_Attr; // file attributes

 unsigned char DIR_NTRes; // reserved for Windows NT - should be 0

 unsigned char DIR_CrtTimeTenth; // millisecond stamp at file creation time. Actually

 contains a count of tenths of a second 0..199

 unsigned char DIR_CrtTime[2]; // time file was created

 unsigned char DIR_CrtDate[2]; // data file was created

 unsigned char DIR_LstAccDate[2]; // last access date (read or write), set to same as

 DIR_WrtDate on write

 unsigned char DIR_FstClusHI[2]; // high word of this entry's first cluster number

 (always 0 for a FAT12 or FAT16 volume)

 unsigned char DIR_WrtTime[2]; // time of last write, whereby a file creation is

 considered as a write

 unsigned char DIR_WrtDate[2]; // date of last write, whereby a file creation is

 considered as a write

 unsigned char DIR_FstClusLO[2]; // low word of this entry's first cluster number

 unsigned char DIR_FileSize[4]; // file's size in bytes

} DIR_ENTRY_STRUCTURE_FAT32;

Code 7-1 Directory entry struct

Analysing the single directory entry in the root directory reveals the volume name “UTFAT”,

with attribute “volume ID” (0x80). There are no further entries because the following directory

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 25/65 11.7.2014

entry starts with a 0x00. The creation data is also set, whereby this will be the local time if

the define

#define SUPPORT_FILE_TIME_STAMP

is set and there is a corresponding source of time and date (usually used together with real-
time-clock support) or else will be a fixed time and date. The time and data details are shown
with black background.

7.4. Creating a New Directory

These descriptions assume that directories and files are in 8:3 format. That is, they
correspond to short file names like “FILETEST.TXT”. The effect of long file names is
discussed later on in the document.

A new directory can be created by commanding “mkdir dir1”. This will create the directory

dir1 in the root directory which is then listed when the “dir” command is executed.

D:\>mkdir dir1

D:\>dir

Directory D:\

---- 03.03.2012 20:14 <DIR> dir1

0 files with 0 bytes

1 directories, 1973698560 bytes free

D:\>

Terminal 7-8 Creating and listing a new directory

The new directory entry can now also be seen in the root directory’s cluster:

“UTFAT” – Volume ID “DIR1” – Directory “DIR1” starts in cluster 3

D:\>sect 1dd1

Reading sector 0x00001dd1

 0x41465455 0x00000054 0x08000000 0x92370000 0x40634063 0x92370000 0x00004063 0x000...

 0x31524944 0x20202020 0x10202020 0x92f60018 0x40634063 0x9f600000 0x00034063 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-9 Content of the root directory with one directory

The attribute 0x10 indicates that the entry is a ‘directory’ and the cluster location of this
directory set to 0x00000003.

µtFAT also adds a time and date stamp when directories and files are created and when they
are written as described in the previous section (the part with black background).

The value 0x18 (DIR_NTRes) is always set although it is generally described as being 0; this

is consistent with the behaviour of the FAT file system used by Windows but the reason for it
is not known.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 26/65 11.7.2014

The new directory has also been allocated its own cluster, which can also be seen in the
FAT32:

Specifies single cluster Specifies single cluster used by directory dir1
used by root directory

D:\>sect 5f

Reading sector 0x0000005f

 0x0ffffff8 0xffffffff 0x0fffffff 0x0fffffff 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-10 Content of first FAT32 sector – one directory in the root directory

The newly created cluster for the directory “dir1” is also not completely empty as shown

below. Note that the cluster 3 is one cluster after the root directory’s, meaning that it starts at

0x1dd1 + 8 = 0x1dd9 (remembering that each 4k cluster is made up of 8 sectors).

“.” – Directory “..” - Directory

D:\>sect 1dd9

Reading sector 0x00001dd9

 0x2020202e 0x20202020 0x10202020 0xa1ca0000 0x40634063 0xa1ca0000 0x00034063 0x00000000

 0x20202e2e 0x20202020 0x10202020 0xa1ca0000 0x40634063 0xa1ca0000 0x00024063 0x00000000

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-11 Content of the empty directory “dir1”

Analysing the directory entries reveals that there are in fact two directories called ‘.’ and ‘..’
automatically created and the rest of the directory cluster is set to 0. These are in fact also
displayed when the SD card is used in a PC to indicate the present directory and the path
upward to the next higher directory. The µtFAT module generates these for compatibility but
doesn’t actually use them.

Note that the clusters entered for the two entries are the same cluster for “.” and the cluster
of the upper level for “..” – the directory “.” is therefore the own directory and the directory “..”
is one level up!

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 27/65 11.7.2014

7.5. Creating a New File

These descriptions assume that directories and files are in 8:3 format. That is, they
correspond to short file names like “FILETEST.TXT”. The effect of long file names is
discussed later on in the document.

Although it is possible to create an empty file by using the “file” command, and also adding

some content to it (256 bytes each execution) using the “write” command we will be a little

more adventurous for the next steps. This assumes that the board used for tests also has an
Ethernet connection since the µTasker FTP and HTTP servers will now come into play.

1) Connect to the board from a DOS window via FTP. Check that the same single
directory is displayed when the “dir” command is executed.

2) Now change directory with “cd dir1”. You are now in the new directory, which is

presently empty.

3) Transfer an existing HTM file (it is assumed that this is called “test.htm”) which is

larger than 4k in size (this will ensure that it uses more than one cluster to be saved

in) and save it as “index.htm” – using the command “put test.htm

index.htm”.

4) Browse to the IP address of the board to view this file.

Note that, if you have no .htm file suitable you can also transfer a file such as a PDF

document and access it by browsing directly to it with http://192.168.0.3/test.pdf, for example.

It is assumed that the FTP and HTTP tests went well – details of working with FTP and HTTP
are described in later sections. However the point of the test was in fact to add a file to the
sub-directory and see what the FAT32 area looks like now.

D:\>sect 5f

Reading sector 0x0000005f

 0x0ffffff8 0xffffffff 0x0fffffff 0x0fffffff 0x00000005 0x0fffffff 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-12 Content of first FAT32 sector – including one file occupying multiple clusters

This shows the result of a file of 5’199 bytes (0x144f) in length. It was originally created in

cluster 4 (it started out with 0x0fffffff) but then overflowed and required a new cluster.

Since the next cluster was free it then started occupying cluster 5, which has the value
0x0fffffff since it is indeed the last in the new cluster chain.

The cluster 4 entry has however been modified in the process to indicate where the following
cluster can be found – in this case simply in the next cluster space, cluster number 5, but it
could be anywhere in the cluster area.

When the file was served by the HTTP server the file needed to be first found – this was
achieved by searching the directory for the file entry so that the length of the file and its
cluster location became known. Below is the directory’s content again after the new file
“index.htm” was added:

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 28/65 11.7.2014

 “INDEX.HTM” – File File content starts in cluster 4

D:\>sect 1dd9

Reading sector 0x00001dd9

 0x2020202e 0x20202020 0x10202020 0xa1ca0000 0x40634063 0xa1ca0000 0x00034063 0x00000000

 0x20202e2e 0x20202020 0x10202020 0xa1ca0000 0x40634063 0xa1ca0000 0x00024063 0x00000000

 0x45444e49 0x20202058 0x204d5448 0xa4d50018 0x40634063 0xa4d50000 0x00044063 0x0000144f

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x00000000 0x000...

D:\>

Terminal 7-13 Content of the empty directory “dir1” with new file “index.htm”

The file is recognised by its file attribute 0x20, has a length of 0x144f and its start is in

cluster 4.

Therefore the file was found by the HTTP server and the content could be read. During the
read process the first 4k file content was taken from cluster 4, which needed no FAT32

intervention. But, as soon as the complete content of the first cluster had been read it was
necessary to check where the rest could be found – the fact that it is simply in the following
cluster is an assumption that cannot be made since it could in fact be anywhere in the cluster
area!

The way that this took place was to consult the FAT32 table by seeing whether this is the
final cluster (a value of 0x0fffffff would be expected if that was the end of the cluster

chain belonging to the file) or whether there are following clusters. Since this present cluster
is 4 (counting from 0) its corresponding FAT32 entry can be found by reading the first FAT32

sector and then using the 4th cluster entry (see Terminal 7.12) to see which cluster to use
next. In this case it does simply use the following cluster number 5.

Having the sector display as a 16 x 8 field makes following FAT32 cluster chains simple
since the present cluster can be read directly – eg. if the present cluster is 0x23, its
corresponding entry is two lines down and 4 entries to the right [in the case above (0x04) it
was 0 lines down and the 4th entry to the right]. If this is 0x0fffffff it is the final cluster in

the chain, else the next one is directly displayed.

Generally the calculation for a cluster in a FAT32 file system is as follows:

1) The FAT32 sector in which the cluster entry is to be found is (cluster/128). This

gives the actual physical sector as FAT_start + (cluster/128), where 128 comes

from the number of long words in a sector (512/4)

2) The entry in this sector is (cluster & 0x7f), which is a value between 0..127.

FAT32 allows a single file of up to almost 4 GByte in size to be saved and retrieved. A cluster
chain can be followed by using the technique above to move from the start of the file one
cluster at a time until the end of the file is reached.

Note that FAT32 doesn’t allow for efficiently moving backwards through a cluster chain!

Clusters on SD cards don’t take longer to access when located closer or further apart. Floppy
disks however do since the locations require physical movement to take place which takes
longer as the distance increases. Defragmentation is a technique used to improve the access
speed on floppy disks and hard discs, whereby the clusters in single files can be moved to
occupy a contiguous section of memory. Defragmentation of SD cards has, in comparison,
no benefits.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 29/65 11.7.2014

When FAT16 is used the basic operation is very similar and the main difference is that the
FAT table doesn’t use 32 bit entries but rather uses 16 bit entries. This means that the
longest cluster chain is limited to about 64k rather than 255M using FAT32. FAT16 is usually

used only when the storage space is relatively small due to the cluster count limitation – its
FAT table is smaller than a corresponding FAT32 table since each cluster entry is half the
size but operations based on the FAT16 table tend to be more complicated than FAT32
operations because the storage elements are not so natural as used by todays 32 bit
processors. FAT12, which is not supported by µtFAT, uses 12 bit entries and so it is even
more complicated to calculate and maintain the entries and FAT12 is rarely used today since
it is only suitable for very small file system sizes.

It is to be noted that the FAT format used can be read from the boot sector details, which
differ slightly in each case.

Finally, FAT16 has an awkward restriction concerning the root directory which has a fixed
size and cannot grow as it can with FAT32. This fixed size means that a certain number of
files (fixed 16k size is common and used by the µtFAT implementation) can fit in the root

directory. As has already been seen, a single entry (directory, file) occupies 64 bytes of

space and so the limit is 256 such entries. As will however been seen later, directories and

files using long file names may occupy multiple entries to save the complete name
information, meaning that only a reduced number of elements using long names can fit. The
limitation can be easily seen in operation on a FAT16 formatted SD card when an attempt is
made to copy a large number of individual files to its top directory; the attempt results in an
error message from Windows and the user needs to create a sub-directory to achieve the
storage.

Due to the fact that FAT16 has additional complications but only negligible memory
advantages in most modern systems it is recommended to generally use FAT32.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 30/65 11.7.2014

8. FTP Server and µtFAT

The FTP server can work with the SD card if the define FTP_UTFAT is active. If a formatted

SD card is inserted accesses will be to this. The root directory used by the FTP server is
defined by FTP_ROOT "/"

In this case it has root access and so can work in all directories and sub-directories on the
disk. More restricted access can also be given if required.

Since µtFAT V2.0 supports reading and displaying long file names (with define
UTFAT_LFN_READ active) it can display such folders and files which were copied to the disk

from a PC supporting LFN. Furthermore if UTFAT_LFN_WRITE is enabled LFNs can be

written or renamed. UTFAT_LFN_DELETE enables also LFN deletes.

The FTP interface supports moving between directories, creating directories, writing and
reading files (writes truncate files, meaning that existing files will first be deleted), deleting
files and empty directories and renaming files and directories.

Accesses are always relative to the present directory position.

If the SD card is removed the FTP server will fall back to work with the µFileSytem.

9. HTTP Server and µtFAT

The HTTP server can work with the SD card if the define HTTP_UTFAT is active. If a

formatted SD card is inserted accesses will be to this. The root directory used by the HTTP
server is defined by HTP_ROOT "dir1"

In this case it has access to all directories and sub-directories in this directory but not higher.

Since µtFAT V2.0 supports reading long file names (with define UTFAT_LFN_READ active) it

can serve linked files from directories with long file names which were copied to the disk from
a PC supporting LFN. The HTTP root can also be a long file name path in this case.

Accesses to files are always relative to the HTTP root.

If the SD card is removed the HTTP server will fall back to work with the µFileSytem.

The default file served when no file is defined (default file) is defined by
DEFAULT_HTTP_FILE "index.htm". This can also be a long file name if the

option UTFAT_LFN_READ is active

The HTTP release at the time of writing doesn’t support posting data to the SD card – this is
however not a restriction of the µtFAT module but missing native support in the HTTP server.
The application can however intercept such posted data if required to save it to an SD card.

A powerful feature of the HTTP server and long file name support is that existing web server
content can be copied from a PC to an SD card, which can then be served by the embedded
board. The only requirement is that the HTTP root directory corresponds to that configured
by the project and that the default file exists with the correct name. All standard web content
can then be server / browsed, including web pages, images, documents etc. Due to the large
size of the SD card memory very large web server contents can be used even together with
small processors.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 31/65 11.7.2014

Since the µTasker doesn’t support server side technologies like PHP, such file types cannot
be handled. However the µTasker server’s dynamic HTTP methods can be applied to such
HTTP content if required.

10. Working with the µtFAT User Interface

The µtFAT user interface shows how moving around directory contents can be performed in
a simple manner similar to the well known DOS interface. Terminal 10.1 shows the contents
of a sub-directory which is being displayed from a higher level directory – notice that the
user’s position is not in the directory being displayed but one level higher, thus the command
“dir webpages/webpagesSAM7x” includes the full relative path to the directory.

>dir webpages/webpagesSAM7x

Directory webpages/webpagesSAM7x

---A 29.07.2009 13:39 2452 0Menu.HTM

---A 25.07.2009 23:36 2600 4Lan.htm

---A 06.09.2006 22:48 2007 7Logo.jpg

---A 25.07.2009 23:37 2977 9I_O.htm

---A 25.07.2009 23:27 1114 CLCD.htm

---A 25.07.2008 00:47 40 Copy_all.bat

---A 04.05.2008 19:04 44 delete_all.bat

---A 25.07.2009 23:38 1620 EStats.htm

---A 26.07.2009 00:25 195 ftp.txt

---A 23.04.2008 16:19 33 ftp_del.txt

---A 25.07.2009 23:39 2338 Hserial.htm

---A 25.07.2009 23:42 2019 Kadmin.htm

---A 25.07.2009 23:48 1578 Mhelp.htm

---A 07.10.2006 13:50 2498 OLogo.gif

---- 29.07.2009 13:43 <DIR> AlternativePages

---- 20.06.2008 13:50 <DIR> Alternative_Logo

---- 29.07.2009 13:39 <DIR> FileSystem

14 files with 21515 bytes

3 directories, 3173023744 bytes free

>

Terminal 10-1 Content of an SD card containing directories and files using LFN

As shown in Terminal 10-2 path names can use ‘/’ or ‘\’, and file names are not case

sensitive

>print webpages/webpagesSAM7X\Mhelp.htm

<html><head><meta http-equiv="content-type" content="text/html; charset=UTF-8"><title>&micr..

<table cellspacing=0 cellpadding=0><tr><td width=10%> </td><td align=left>

Thank you for using the µTasker for the SAM7X.

I hope that you have fun and can save time using it when developing your own applications....

To get latest details about the µTasker developments for this and further pla...

M.J.Butcher Consulting

Birchstrasse 20f,

CH-5406 Baden-Ruetihof,

Switzerland

+41 (0)56 535 15 70
info_uT@uTasker.com

The µTasker is available free of charge, including email support, for educati...

</td></tr></table>

 Go back to menu page

</body></html>

Terminal 10-2 Printout of the content of a file in a referenced directory

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 32/65 11.7.2014

Directories can be changed by using the “cd” command, for example “cd webpages”.

Moving upwards is possible with “cd ..”, or “cd ../..”, etc.. Referencing other directories

not under the present directory location can be achieved by “cd ../../webpages”, for

example.

The complete list of basic commands are (commands are case-sensitive):

info utFAT/card info Display SD card and FAT32 information

dir [path] show directory

content
Display present directory,
eg. “dir dir1/webpages”

cd [path] change dir. (.. for

up)
Move the directory location,

eg. “cd dir/webpages”

file [path] new empty file Create an empty file. If a file exists with the
same name it will be truncated, meaning
that its length will be set to 0 and its content
effectively destroyed.

write [path] test write to file Write test data to the file – the file’s length is
increase each time by 256 bytes with a
value 0x55 the first time used, 0x56 the
second, etc.

mkdir new empty dir Create a new directory, eg. “mkdir dir2”.

If the directory already exists it will not be
modified.

rename [from] [to] rename Rename an existing file or directory, eg.
“rename dir1 dir2”

trunc truncate to [length] [path] Truncate an existing file, eg. “trunc

file1.txt 1024”

The file will be reduced in length to the new
length defined. The number of clustered that
were freed will be displayed.

print [path] print file content Print the content of an existing file to the
debug output (non-displayable characters
are output as ‘.’)

del [path] delete file or dir. Delete a file or directory. Directories can
only be deleted when they are empty.

format [-16] [label] format
(unformatted) disk

Format an unformatted SD card with
optional volume ID,
eg. “format UTFAT_DISK”

[-16] only available when FAT16 is supported

fformat [-16] [label] FULL format

(unformatted) disk
Same as “format” but deletes all cluster

content – only available with option
UTFAT_FULL_FORMATTING

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 33/65 11.7.2014

re-format [-16] [label] reformat

disk!!!!!

WARNING – the existing
FAT32 table will be
destroyed!!

Reformat a formatted disk, with optional
volume ID,

eg. “format UTFAT_DISK”

[-16] only available when FAT16 is supported

re-fformat [-16] [label] FULL reformat

disk!!!!!

WARNING – the existing
FAT32 table and all disk
content will be
destroyed!!

Same as “re-format” but deletes all

cluster content – only available with option
UTFAT_FULL_FORMATTING

sect [hex number] display sector Display the content of a 512 bytes sector on
the SD card, eg. “sect 5f”

Dependent on TEST_SDCARD_SECTOR_WRITE in debug.c.

sectw [hex number] [pattern] Write a pattern (bytes starting with the value
pattern and incrementing for each byte
written) to a specified section. This
command is only available for low-level test
purposes when the define

Dependent on UTFAT_UNDELETE || UTFAT_EXPERT_FUNCTIONS

dird [path] show deleted directory content (rather than
valid content).

Dependent on UTFAT_EXPERT_FUNCTIONS

dirc [path] show corrupted

directory content
show result of analysis of any file corruption
found in a directory

infof [path] show file info shows detailed information about the file or
directory’s object and storage, including
SFN and LFN content and physical location

Dependent on UTFAT_SAFE_DELETE

dels [path] safe delete file or

dir.
Deletes entire file details and content so that
they can neither be seen by “dird” or

recovered by “undel”

Dependent on UTFAT_UNDELETE

undel undelete [name] Undelete a deleted file (as displayed by
“dird”) and give it the name

UNDELETE.TXT, which can subsequently be

renamed if required

Example “undel ~test1.txt”

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 34/65 11.7.2014

11. µtFAT Application User Interface

The following commands are used by the disk interface (see debug.c), which serves
as additional reference to their use.

11.1. utAllocateDirectory()

extern UTDIRECTORY*utAllocateDirectory(unsigned char ucDisk, unsigned short usPathLength);

This function allocates a directory from the directory pool (size of pool defined by

UT_DIRECTORIES_AVAILABLE in config.h). For the SD card the disk should always be

DISK_D.

The pointer returned is to the directory object allocated for use.

The value of usPathLength is the length of a path string that is to be used with the directory. This
size can be 0 if none is required otherwise the string space is also allocated on heap for use by the

object (ptr_utDirectory->ptrDirectoryPath).

It is recommended to use a directory pointer as only interface to the disk (SD card).

 static UTDIRECTORY *ptr_utDirectory = 0; // pointer to a directory object

Often one single directory pointer is adequate for a particular interface (for example the
HTTP server uses just one to control all of its possible HTTP sessions) – there is no limit to
the quantity of files that can be opened using the single directory pointer.

The first action is to register the directory, which is performed only once:

 if (ptr_utDirectory == 0) {

 ptr_utDirectory = utAllocateDirectory(DISK_D, UT_PATH_LENGTH);

 // allocate a directory for use by this module

 // associated with D: and reserve its path name string length

 }

DISK_D is always used for the SD card and a path length is chosen that will be adequate to

hold the complete path string to the directories used*. This string length can also be 0 if all
referencing is from the present directory (eg. HTTP doesn’t have a path string but instead all
is referenced to its own root).

* When using a string it takes up space which is created within utAllocateDirectory()

but allows moving up and down a directory path (assuming starting at the root d:/):

cd dir1 (new position = d:/dir1/)

cd dir2 (new position = d:/dir1/dir2)

cd dir3 (new position = d:/dir1/dir2/dir3)

cd .. (new position = d:/dir1/dir2 [the .. moves up one level])

cd ../dir5 dir2 (new position = d:/dir1/dir5)

The length needs to be adequate for the deepest directory

(d:/dir1/dir2/dir3/dir4/dir5/... etc.). Note that the DOS-like menu interface

uses a path string to accomplish this.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 35/65 11.7.2014

FTP also uses a path string. It can reference directives below itself

 “dir dir2/dir3/dir4” and it can also move down “cd dir2/dir3” as well as move back up

the path or reference upwards like “cd ../dir5”.

Therefore the string use is user definable. HTTP can work without needing a directory path string

(saves space) but the DOS like interface uses one since it makes it easier for the user to move around

with.

11.2. utOpenDirectory()

extern int utOpenDirectory(const CHAR *ptrDirPath, UTDIRECTORY *ptrDirObject);

This function sets the root directory location for the directory object. The path, ptrDirPath is a
path reference relative to the root directory of the disk. It can be 0 if the directory objects root
position is to be equal to the disk’s root directory.

The routine returns UTFAT_SUCCESS if the directory location could be set.

Errors can be:

UTFAT_DISK_NOT_READY - disk not ready for use - not formatted or not mounted

UTFAT_PATH_NOT_FOUND - the referenced directory path could not be found

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_PATH_IS_FILE - the referenced object is a file and not a directory

The directory pointer is validated by setting its root directory. This directory can be the root of
the disk or any existing directory or sub-directory on the disk.

 if (utOpenDirectory(0, ptr_utDirectory) != UTFAT_SUCCESS) { // open the root directory

 fnDebugMsg("No SD-Card ready\r\n");

 }

The root directory can be specified by using 0, ‘\’ or ‘/’. Directories or sub-directories can be
specified by entering the full path to its location:

 if (utOpenDirectory(“/HTTP_DIR”, ptr_utDirectory) != UTFAT_SUCCESS) {// open the directory

 fnDebugMsg("Directory not found\r\n");

 }

To check to see whether the directory pointer is valid for operation the check

if (ptr_utDirectory->usDirectoryFlags & UTDIR_VALID)

can be used. The opened directory is now the highest location that can be accessed together
with the directory object and is also the start of the optional path string.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 36/65 11.7.2014

The directory flags are:

UTDIR_ALLOCATED set if the directory object is allocated to an application

UTDIR_VALID set if the directory object is valid and can be used

UTDIR_REFERENCED set if the present access is referenced to the present directory

path location
UTDIR_SET_START if the file is not found the directory should be set to the lower

directory in the path so that new files can be added there
UTDIR_DIR_AS_FILE if set handles directories and files equivalently - used when

renaming and deleting
UTDIR_TEST_REL_PATH if set, test a path relative to the present directory path location

but don't move to it
UTDIR_TEST_FULL_PATH signifies temporary reference from the root directory

UTDIR_TEST_FULL_PATH_TEMP signifies temporary reference from the present directory

path reference
UTDIR_ALLOW_MODIFY_PATH if set, allow a directory search to modify the directory path

string if it exists

11.3. utChangeDirectory()

extern int utChangeDirectory(const CHAR *ptrDirPath, UTDIRECTORY *ptrDirObject);

This function moves the present directory location (originally set with utOpenDirectory()) to a
new one.

If the command is successful it returns UTFAT_SUCCESS.
Errors can be:

UTFAT_PATH_NOT_FOUND – new path is invalid

UTFAT_DISK_NOT_READY – disk not ready (eg. it has been removed)

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

The new directory location is referenced to the present directory and the file object’s
ptr_utDirObject must be set to the directory pointer.

if (utChangeDirectory(“../../dir1/dir2”, ptr_utDirectory) != UTFAT_SUCCESS) {

 // change the directory location

 fnDebugMsg("Invalid path\r\n");

}

This example shows a movement from a sub-directory location up two levels and then into
dir1/dir2.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 37/65 11.7.2014

11.4. utOpenFile()

extern int utOpenFile(const CHAR *ptrFilePath,

 UTFILE *ptr_utFile,

 UTDIRECTORY *ptr_utDirectory,

 unsigned long ulAccessMode);

This function opens a file referenced by ptrFilePath and belonging to the directory

ptr_utDirectory with the access mode as defined by usAccessMode.
The access modes are one or more of these:

UTFAT_OPEN_FOR_READ - file to be opened for reading

UTFAT_OPEN_FOR_WRITE - file to be opened for writing to

UTFAT_OPEN_FOR_DELETE - file to be opened so that it can be deleted

UTFAT_PROTECTED - the file is to be opened and protected - no access by other users

UTFAT_MANAGED_MODE - open the file in managed mode so that any changes to it by other users
are automatically updated
[the following are flags that can be used to control the open but not saved as file object mode]

UTFAT_OPEN_FOR_RENAME - file to be opened so that it can be renamed

UTFAT_TRUNCATE - if the file already exists truncate it so that its length is zero

UTFAT_CREATE - if the file doesn't exist create it

UTFAT_APPEND – opens a file and automatically sets its file pointer to the end of any existing file
ready for subsequent append writes

UTFAT_DISPLAY_INFO – only available with option UTFAT_EXPERT_FUNCTIONS. Used to
request details of file to be printed to the debug output

UTFAT_COMMIT_FILE_ON_CLOSE – the file’s details (size, time, etc.) is only updated to disk when
the file is closed. This avoids writes to the disk on each data write (can greatly improve write
speeds) with a risk that the file’s size is not correct if there is a system reset before the close.

UTFAT_WITH_DATA_CACHE - only available with option UTFAT_FILE_CACHE_POOL. The file is
allocated a sector buffer (when available) and modified data is only committed to the disk when the
sector is changed. Reads from the sector (also from other users) are taken from the sector buffer
(data cache) when its content is up to date. This can improve read speed if the reads access
cached data.

If the open command is successful it returns UTFAT_PATH_IS_FILE. Note that this a positive

value but explicitly identifies a file open with this value. The file object pointed to by ptr_utFile is
filled out with the file information for use by the application.

Errors can be:

UTFAT_DISK_NOT_READY – disk not ready; for example, the card was removed

UTFAT_SEARCH_INVALID - a file search was invalid since the file object is not associated with a
directory object

UTFAT_PATH_NOT_FOUND – invalid path was entered

UTFAT_DISK_WRITE_PROTECTED – open for write, delete or rename failed since the file is read
only

UTFAT_FILE_NOT_FOUND - the referenced file was could not be found

UTFAT_FILE_LOCKED - the file could not be opened since it is locked for exclusive use by another
user

MANAGED_FILE_NO_FILE_HANDLE – no space is available for a managed file

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 38/65 11.7.2014

A file can be opened for read and/or write access. It is always opened referenced to the

present directory. [Note that the directory pointer does not have to be entered to the UTFILE

struct from utFAT2.0 since the it is now passed to utOpenFile()]

 UTFILE utFile; // temporary file object

 if (utOpenFile(ptrInput, &utFile, ptr_utDirectory,

 (UTFAT_OPEN_FOR_READ | UTFAT_OPEN_FOR_WRITE |

 UTFAT_CREATE)) != UTFAT_PATH_IS_FILE) {

 // open a file for reading and writing and create if not existing

 fnDebugMsg("Create file failed\r\n");

 }

 else {

 fnDebugMsg("File length = ");

 fnDebugDec(utFile.ulFileSize, 0);

 fnDebugMsg("\r\n");

 }

When opening a file it can be created if not already existing and can be truncated (content
deleted if existing).

A file opened in managed mode should also have the ownerTask element of the file object

set – this is used to identify the task owning the open file (there can however be multiple
owner tasks)

 utFile.ownerTask = OWN_TASK;

A file object in managed file mode will be automatically updated if any user modifies the
opened file. The user modifying the file doesn’t have to open it in managed mode for this to
happen. For example, if another user writes to the file, the file length will be automatically
adjusted accordingly in the file object. If another user should reduce the length of a file its
length in the file object will also be adjusted and the file pointer may also be corrected so that
it is in a valid range.

Generally the file object is used for subsequent file operations, like writes and reads. The
object contains two values which the user often accesses to gain information about the file:

 utFile.ulFileSize; - file's total length

 utFile.ulFilePosition; - present linear file position (pointer)

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 39/65 11.7.2014

11.5. utTruncate()

extern int utTruncateFile(UTFILE *ptr_utFile);

This function allows an existing file, reference by ptr_utFile, to be truncated to a new, smaller
length. Its typical use is to move the file pointer to a specific location in the existing file and then
limit the file length to that location, whereby all additional content (clusters) that were used by the
original file size are freed.

The routine returns UTFAT_SUCCESS if the truncation was successful. It also return success if the
file pointer was already located at the end of the existing file.

Errors can be:

UTFAT_FILE_NOT_WRITEABLE - file not writeable

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

The following example shows an existing file being opened and then the file pointer being set
to a fixed location (assumed to be at a position shorted than the original file size). After the
truncation the file will be reduced to this size and so further writes to the file effectively add
new data from this location.

utOpenFile(“test_file.txt”, &utFile, ptr_utDirectory,

UTFAT_OPEN_FOR_WRITE);

utSeek(&utFile, 100, UTFAT_SEEK_SET);

utTruncateFile(&utFile);

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 40/65 11.7.2014

11.6. utSeek()

extern int utSeek(UTFILE *ptr_utFile, unsigned long ulPosition, int iSeekType);

This function controls the position of the file pointer within the file referenced by ptr_utFile.

The following iSeekType values are valid:

UTFAT_SEEK_SET - set to the position relative to the start of the file

UTFAT_SEEK_CUR - set to the position relative to the present position (can be positive or negative)

UTFAT_SEEK_END - set to the position relative to the end of the file

The routine returns UTFAT_SUCCESS if the new pointer location could be set.

Errors can be:

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

When a file is opened (for reading or for writing) its internal file pointer is generally set to the
start of the file. If additional data is to be written to a file, without overwriting existing data at
the start of the file, the file pointer can be positioned to the end of the file by using the
command

utSeek(&utFile, 0, UTFAT_SEEK_END);

The use of utSeek() is equivalent to the well known lseek() library function.

Note that opening a file with the flag UTFAT_APPEND automatically causes a seek to the end
of the file to take place.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 41/65 11.7.2014

11.7. utWriteFile()

extern int utWriteFile(UTFILE *ptr_utFile,

 unsigned char *ptrBuffer,

 unsigned short usLength);

This function allows content (binary) to be written to the file referenced by ptr_utFile. The

amount of data usLength from ptrBuffer will be written to the file beginning from the present
file pointer position. The length of the file will be automatically increased if the data write is beyond
the present file end.

The routine returns UTFAT_SUCCESS if the data was successfully written.

Errors can be:

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_FILE_NOT_WRITEABLE - the file cannot be written because it is either not opened in write
mode, is marked as a read-only file on the disk or writes are being blocked by another user

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

UTFAT_DISK_WRITE_PROTECTED – the SD card is write-protected

A write to a file is made at its present file position, whereby the position is at the start of the
file when it is first opened (or at end when using the open flag UTFAT_APPEND). This

generally allows content to be overwritten. If additional content is to be added, the file
position should first be change accordingly using the utSeek() command (unless the

UTFAT_APPEND flag was used to open the file). When additional data is written over the end

of the present file the file’s length will be increased accordingly. After a write the amount of
data written is held in ptr_utFile->usLastReadWriteLength.

Should the file be opened by other users in managed mode the file objects of the other users
will be updated in case of changes to the file size. If a data caching is being used the write
may be set to the data cache only but all other users will access the data cache when
reading from the corresponding sector and so always be synchronised with the written data
even when it has not yet been committed to disk.

If the file is not opened for write, or is protected by another user, any attempted write to it will
fail. The same is true when the file is marked as a read-only file on the disk or if the disk is
generally write protected.

To avoid multiple users writing a single file it is advisable to open it as a managed file, which
will stop a second user from being able to open it for write.

 if (utWriteFile(&utFile, “Test Content ”, 13) != UTFAT_SUCCESS) {

 fnDebugMsg("write failed");

 }

 else {

 fnDebugMsg("New file length = ");

 fnDebugDec(utFile.ulFileSize, 0);

 }

 fnDebugMsg("\r\n");

Note that the file object’s position pointer is modified by reads and writes. There is one
pointer shared by both functions.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 42/65 11.7.2014

11.8. utRenameFile()

extern int utRenameFile(const CHAR *ptrFilePath, UTFILE *ptr_utFile);

This function allows a file or a directory to be renamed.

The routine returns UTFAT_SUCCESS if the file or directory was successfully deleted.

Errors can be:

UTFAT_DIR_NOT_EMPTY – a directory could not be deleted because it is not empty

UTFAT_PATH_NOT_FOUND – either original file/directory not found or new path not found

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_FILE_NOT_WRITEABLE - the file cannot be written because it is either not opened in write
mode, is marked as a read-only file on the disk or writes are being blocked by another user

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

UTFAT_DISK_WRITE_PROTECTED – the SD card is write-protected

LFN_RENAME_NOT_POSSIBLE – a LFN has been detected but support for LFN writing is not
oenabled

Files and directories are essentially treated the same since both have a file entry.

Example of renaming a file:

if (utRenameFile(“dir2/file4.txt”, “dir2/file5.txt”) != UTFAT_SUCCESS) {

 fnDebugMsg("Rename failed\r\n");

}

Example of renaming a directory:

if (utRenameFile(“dir3”, “dir4”) != UTFAT_SUCCESS) {

 fnDebugMsg("Rename failed\r\n");

}

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 43/65 11.7.2014

11.9. utDeleteFile()

extern int utDeleteFile(const CHAR *ptrFilePath, UTDIRECTORY *ptrDirObject);

This function allows a file or a directory to be deleted.
If a file is deleted, the file entry is marked as deleted and its content cluster chain is freed in the
FAT table. The file’s data content is not deleted from the disk and it may be possible to undelete
the file later.

A directory can only be deleted when it is empty.

The routine returns UTFAT_SUCCESS if the file or directory was successfully deleted.

Errors can be:

UTFAT_DIR_NOT_EMPTY – a directory could not be deleted because it is not empty

UTFAT_PATH_NOT_FOUND – file or directory not found

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_FILE_NOT_WRITEABLE - the file cannot be written because it is either not opened in write
mode, is marked as a read-only file on the disk or writes are being blocked by another user

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

UTFAT_DISK_WRITE_PROTECTED – the SD card is write-protected

Files and directories are essentially treated the same since both have a file entry. Directories
must however be empty before they can be deleted.

Example of deleting a file:

if (utDeleteFile(“dir1/file1.txt”, ptr_utDirectory) != UTFAT_SUCCESS) {

 fnDebugMsg("Delete failed\r\n");

}

Example of deleting a directory:

Int iResult = utDeleteFile(“dir3”, ptr_utDirectory);

if (iResult != UTFAT_SUCCESS) {

 if (iResult == UTFAT_DIR_NOT_EMPTY) {

 fnDebugMsg("Directory can only be deleted when empty!\r\n");

 }

 else {

 fnDebugMsg("Delete failed\r\n");

 }

}

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 44/65 11.7.2014

11.10. utSafeDeleteFile()

extern int utSafeDeleteFile(const CHAR *ptrFilePath, UTDIRECTORY *ptrDirObject);

This function allows a file or a directory to be deleted without leaving information on the disk.
If a file is deleted the file entry is completely destroyed, the content’s content cluster chain is freed
in the FAT table and the original file data content is written with zeroes.

A directory can only be deleted when it is empty.

The routine returns UTFAT_SUCCESS if the file or directory was successfully deleted.

Errors can be:

UTFAT_DIR_NOT_EMPTY – a directory could not be deleted because it is not empty

UTFAT_PATH_NOT_FOUND – file or directory not found

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_FILE_NOT_WRITEABLE - the file cannot be written because it is either not opened in write
mode, is marked as a read-only file on the disk or writes are being blocked by another user

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

UTFAT_DISK_WRITE_PROTECTED – the SD card is write-protected

Files and directories are essentially treated the same since both have a file entry. Directories
must however be empty before they can be deleted.

Example of safely deleting a file:

if (utSafeDeleteFile(“dir1/file1.txt”, ptr_utDirectory) != UTFAT_SUCCESS) {

 fnDebugMsg("Delete failed\r\n");

}

Example of safely deleting a directory:

Int iResult = utSafeDeleteFile(“dir3”, ptr_utDirectory);

if (iResult != UTFAT_SUCCESS) {

 if (iResult == UTFAT_DIR_NOT_EMPTY) {

 fnDebugMsg("Directory can only be deleted when empty!\r\n");

 }

 else {

 fnDebugMsg("Delete failed\r\n");

 }

}

Beware that the complete existing file content is deleted during the call, which may require a
long time in case the original file was large. If the delete time is an issue it may be better for
the user to write the present content to a deleted state using a managed write method
(background task), truncate the file to zero length and then finally call the safe delete function
to remove the remaining file object itself.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 45/65 11.7.2014

11.11. utReadFile()

extern int utReadFile(UTFILE *ptr_utFile,

 unsigned char *ptrBuffer,

 unsigned short usLength);

This function allows content (binary) to be read from the file referenced by ptr_utFile. The

amount of data usLength, or the amount that can be read if the file end is reached, is copied to

the space ptrBuffer.

The routine returns UTFAT_SUCCESS if the data was successfully written.

The amount of data read is contained in ptr_utFile->usLastReadWriteLength

Errors can be:

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_FILE_NOT_READABLE - the file is not opened in read mode

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

When the file is opened its pointer position is generally at the start of the file and the first
read returns data from the start of the file unless the pointer is first modified using
utSeek(). Each subsequent read increments the pointer to the end of the read block so that

multiple reads work through the file from its start to its end. If the end of the file was reached
while reading, the amount of data that could be read may be less than usLength. The value

actually read is contained in ptr_utFile->usLastReadWriteLength and will be 0 if the

file is empty or the file pointer is at the end of the file.

Multiple users can read from a file. If the file is opened as a managed file the file object will
automatically be updated when it is changed by a write by another user (for example when
its size is increased).

unsigned char ucTemp[256]; // temp buffer to retrieve a block of data from the file

if (utReadFile(&utFile, ucTemp, sizeof(ucTemp)) != UTFAT_SUCCESS) {

 fnDebugMsg("READ ERROR occured\r\n");

}

else {

 fnDebugMsg(“Length read = ”);

 fnDebugDec(utFile.usLastReadWriteLength, 0);

 if (utFile.usLastReadWriteLength < sizeof(ucTemp)) {

 fnDebugMsg(“ End of file reached”);

 }

 fnDebugMsg(“\r\n”);

}

Note that the file object’s position pointer is modified by reads and writes. There is one
pointer shared by both functions.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 46/65 11.7.2014

11.12. utCloseFile()

extern int utCloseFile(UTFILE *ptr_utFile);

This function is only absolutely necessary when the file was opened in managed file mode so that
the file is no longer owned by the user (which can block other users from writing it).
The call frees the file from the managed file list (if managed file mode is used) and clears the

UTFILE struct that is pointed to by ptr_utFile.

Files that have been opend with the attribute UTFAT_COMMIT_FILE_ON_CLOSE have changes it
the file object committed to disk only when the file is closed.

Example:

UTFILE utFile = {0};

ptr_utFile.ownerTask = OWN_TASK;

utOpenFile(“dir1/file6.txt” &utFile, ptr_utDirectory,

 (UTFAT_OPEN_FOR_WRITE | UTFAT_CREATE | UTFAT_TRUNCATE | UTFAT_MANAGED_MODE));

...

utCloseFile(&utFile); // free from managed file list and clear utFile

11.13. utMakeDirectory()

extern int utMakeDirectory(const CHAR *ptrDirPath, UTDIRECTORY *ptrDirObject);

This function allows a new directory to be created.

The routine returns UTFAT_SUCCESS if the directory was successfully created.

Errors can be:

UTFAT_PATH_NOT_FOUND – error in path

UTFAT_INVALID_NAME – invalid director name

UTFAT_DISK_READ_ERROR – low level error

UTFAT_DIRECTORY_EXISTS_ALREADY – directory already exists

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

UTFAT_DISK_WRITE_PROTECTED - the SD card is write-protected

Creates a directory in the present directory, or in a referenced directory.

if (utMakeDirectory(“dir1/new_dir”, ptr_utDirectory) != UTFAT_SUCCESS) {

 fnDebugMsg("Make dir failed\r\n");

}

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 47/65 11.7.2014

11.14. utLocateDirectory()

extern int utLocateDirectory(const CHAR *ptrDirPath, UTLISTDIRECTORY *ptrListDirectory);

This function is used to fill out a list to a directory which can subsequently be used to work with files
and directories in the directory.

The routine returns UTFAT_SUCCESS if the data was successfully written.

Errors can be:

UTFAT_DIRECTORY_OBJECT_MISSING – no directory object is specified

UTFAT_DISK_NOT_READY - disk not ready for use - not formatted or not mounted

UTFAT_PATH_NOT_FOUND - the referenced directory path could not be found

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

UTFAT_PATH_IS_FILE - the referenced object is a file and not a directory

The user passes a list directory object which is filled by the function with information about
the directory location which can subsequently be used by further operations. This is used
specifically for working together with the utListDir() function which allows simple

directory content listing.

UTLISTDIRECTORY utListDirectory; // list directory object for a single user

utListDirectory.ptr_utDirObject = ptr_utDirectory; // reference the list directory to main

 directory object

if ((iFATstalled == 0) && (utLocateDirectory(“dir”, &utListDirectory) < UTFAT_SUCCESS)) {

 // open a list referenced to the main directory

 fnDebugMsg("Invalid directory\r\n");

}

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 48/65 11.7.2014

11.15. utListDir()

extern int utListDir(UTLISTDIRECTORY *ptr_utDirectory, FILE_LISTING *ptrFileLists);

This function is used to move through the content of a directory. It uses a passed directory list and
fills out the next file/directory in the directory on each call.

The list directory is originally filled by using utLocateDirectory().

The routine returns UTFAT_NO_MORE_LISTING_ITEMS_FOUND when all directory entries have

been worked through or UTFAT_SUCCESS it successfully fills out an entry.

Errors can be:

UTFAT_DISK_NOT_READY - disk not ready for use - not formatted or not mounted

UTFAT_DIRECTORY_AREA_EXHAUSTED - the end of the FAT space was reached and no valid
clusters found

UTFAT_NO_MORE_LISING_SPACE – no more items can be filled out due to lack of buffer space
(this may not be a serious error)

utLocateDirectory() is typically used for working through items in a directory (files and

sub-directories) and can be used to simply list directory content as shown by the following
example:

UTLISTDIRECTORY utListDirectory;

FILE_LISTING fileList = {0};

CHAR cBuffer[MAX_UTFAT_FILE_NAME + DOS_STYLE_LIST_ENTRY_LENGTH];

 // temporary string buffer for listing

fileList.usMaxItems = 1; // get just one item at a time

fileList.ptrBuffer = cBuffer;

fileList.usBufferLength = sizeof(cBuffer);

fileList.ucStyle = DOS_TYPE_LISTING; // format as required for DOS style listing

 // (FTP uses FTP_STYLE_LIST_ENTRY_LENGTH)

utListDirectory.ptr_utDirObject = ptr_utDirectory;

utLocateDirectory(“dir1/dir2”, &utListDirectory); // prepare the list directory

While (utListDir(&utListDirectory, &fileList) != UTFAT_NO_MORE_LISTING_ITEMS_FOUND) {

 // fileList contains information about the next file/directory in the present directory

 // as well as a string formatted for output

 fnWrite(DebugHandle, (unsigned char *)cBuffer, (QUEUE_TRANSFER)fileList.usStringLength);

}

See utLocateDirectory() for details about preparing utListDirectory for use by this

example.

The entries filled out by the function are shown in red – the parameters passed are blue:

typedef struct stFILE_LISTING

{

 CHAR *ptrBuffer; // pointer to character buffer

 unsigned long ulFileSizes; // sum of the total file sizes in this listing

 unsigned short usBufferLength; // length available in character buffer

 unsigned short usStringLength; // length added to character buffer

 unsigned short usMaxItems; // maximum items to be treated in this pass

 unsigned short usItemsReturned; // the number of items treated in this pass

 unsigned short usDirectoryCount; // the number of directories treated in this pass

 unsigned short usFileCount; // the number of files treated in this pass

 unsigned char ucStyle; // the formatting style to be used

} FILE_LISTING;

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 49/65 11.7.2014

11.16. fnGetDiskInfo()

extern const UTDISK *fnGetDiskInfo(unsigned char ucDisk);

This function is used to get a pointer to the disk

The user can collect a pointer to main information about the disk.

UTDISK *ptrDiskInfo = fnGetDiskInfo(DISK_D);

The UTDISK struct contains the following items:

typedef struct stUTDISK

{

 unsigned long ulPresentSector; // the present sector being used by the disk

 unsigned long ulDirectoryBase; // the first cluster in the root directory (usually 2)

 unsigned long ulLogicalBaseAddress; // first cluster containing data

 unsigned long ulVirtualBaseAddress; // virtual cluster starting address,

 compensating unused clusters

 unsigned long ulSD_sectors; // physical sectors on the device

 unsigned char *ptrSectorData; // pointer to a buffer containing a copy of the sector

 data

 unsigned short usDiskFlags; // flags indicating the status of the disk

 UTFAT utFAT; // FAT information concerning the data content

 FILEINFO utFileInfo; // file information used by FAT32

 unsigned char ucDriveNumber; // the drive number of this disk

 CHAR cVolumeLabel[11]; // the volume's label

} UTDISK;

The entry usDiskFlags is an important item since it allows the application to know the

exact state of the disk. Its flag are shown below:

WRITEBACK_BUFFER_FLAG - flag that the present sector buffer has been changed and

 so needs to be physically written back to the card

WRITEBACK_INFO_FLAG - flag that there has been a change made to the card which

 need its info block updated too

FSINFO_VALID - the disk has a valid info block which can be used to

 accelerate some calculations

DISK_UNFORMATTED - disk detected but its content is not formatted

WRITE_PROTECTED_SD_CARD - the SD card has write protection active and so no write

 operations are allowed

DISK_FORMATTED - the disk has been detected and is formatted

HIGH_CAPACITY_SD_CARD - the disk is of high capacity type

DISK_MOUNTED - the disk has been mounted and so is ready for use

DISK_NOT_PRESENT - a check of the disk failed to identify its presence

DISK_TYPE_NOT_SUPPORTED - unsupported disk type detected

DISK_FORMAT_FULL - set all content to 0x00 rather than just all FAT

DISK_FORMAT_FAT16 - FAT16 format rather than FAT32

DISK_TEST_MODE - special flag to control testing (development tests)

User code should never change any values in the UTDISK struct.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 50/65 11.7.2014

11.17. utFreeClusters()

extern int utFreeClusters(unsigned char ucDisk, UTASK_TASK owner_task);

This function is used start a count of the free clusters available on the SD card. It is only needed
when the there is no valid info-block, which otherwise contains this value.

When the free cluster count has been obtained the interrupt event

UTFAT_OPERATION_COMPLETED is sent to the requesting task, which can then read the (updated)

value from the UTDISK pointer.

The routine returns UTFAT_SUCCESS if it successfully starts the free cluster count.

Errors can be:

MISSING_USER_TASK_REFERENCE – no task reference was passed

Example of checking whether the free cluster count is valid and starting a count if necessary:

UTDISK *ptrDiskInfo = fnGetDiskInfo(DISK_D);

if ((ptrDiskInfo->usDiskFlags & FSINFO_VALID) &&

 (ptrDiskInfo->utFileInfo.ulFreeClusterCount != 0xffffffff)) {

 fnDebugMsg(“Free cluster count = “); // free cluster value is known

 fnDebugDec(ptrDiskInfo->utFileInfo.ulFreeClusterCount, WITH_CR_LF);

}

else {

 iFATstalled = STALL_COUNTING_CLUSTERS;

 utFreeClusters(DISK_D, OWN_TASK); // start count of free clusters - the result

 will be displayed on completion

}

If the cluster count was started the task entered as reference will be woken with the interrupt
event UTFAT_OPERATION_COMPLETED. The task can then use the value in ptrDiskInfo-

>utFileInfo.ulFreeClusterCount as present free cluster count, even if there is no

valid info-block.

It is to be noted that a free cluster count can take some time on a large SD card since all of
the FAT has to be read. This is the reason for allowing the mass-storage task to do this as a
background activity.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 51/65 11.7.2014

11.18. utFormat()

extern int utFormat(const unsigned char ucDrive,

 const CHAR *cVolumeLabel,

 unsigned char ucFlags);

This function is used start formatting an SD card. It accepts an optional volume label and the
formatting performed depends on the flags passed.

The flag combination allows formatting as FAT16 or FAT32 as well as re-formatting an already
formatted card.

The routine returns UTFAT_SUCCESS if it successfully starts the formatting/re-formatting.

Errors can be:

UTFAT_DISK_NOT_READY – an attempt was made to format formatted disk

 (use UTFAT_REFORMAT flag)

UTFAT_DISK_WRITE_PROTECTED – write protected disk can’t be formatted/re-formatted

Example of starting the format of a non-formatted an SD card:

 if (utFormat(DISK_D, “UTFAT_DISK”, (UTFAT_FORMAT | UTFAT_FORMAT_32)) != UTFAT_SUCCESS) {

 fnDebugMsg("not possible\r\n");

 }

 fnDebugMsg("in progress - please wait...\r\n");

The formatting flags are shown below, whereby it is to note that FAT32 is the default and is
used when no flag is specified:

 #define UTFAT_FORMAT 0x00 // format only non-formatted disk (default)

 #define UTFAT_REFORMAT 0x01 // reformat already formatted disk

 #define UTFAT_FORMAT_16 0x02 // format as FAT16 rather than FAT32

 #define UTFAT_FORMAT_32 0x00 // format as FAT32 (default)

 #define UTFAT_FULL_FORMAT 0x04 // perform full format - including deleting

 existing cluster content

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 52/65 11.7.2014

11.19. utReadSector()

extern int fnReadSector(unsigned char ucDisk,

 unsigned char *ptrBuffer,

 unsigned long ulSectorNumber);

This function is used to read a sector from the SD card. It is a low-level command used normally
only for testing since it bypasses the µtFAT. It can also be used when the SD card is not formatted
or its format is otherwise invalid.

The routine returns UTFAT_SUCCESS if the read was successful

Errors can be:

ERROR_CARD_TIMEOUT – timeout error reading from card

UTFAT_DISK_READ_ERROR - error occurred while trying to read a sector from the disk

When ptrBuffer is set to an array of 512 bytes (this is needed to be able to accept the

complete sector content) the data read from the sector is copied directly to this buffer.

If a ptrBuffer is set to 0 the read is performed into the disk’s sector buffer (see

ptrSectorData in UTDISK which can be accessed via the pointer returned by

fnGetDiskInfo().

11.20. utWriteSector()

extern int fnWriteSector(unsigned char ucDisk,

 unsigned char *ptrBuffer,

 unsigned long ulSectorNumber);

This function is used to write a sector on the SD card directly with user data. It is a low-level
command used normally only for testing since it bypasses the µtFAT and can cause FAT or data
corruption. It can also be used when the SD card is not formatted.

The routine returns UTFAT_SUCCESS if the write was successful

Errors can be:

ERROR_CARD_TIMEOUT – timeout error reading from card

UTFAT_DISK_WRITE_ERROR - error occurred while trying to write a sector to the disk

ptrBuffer must be set to an array of 512 bytes which contains the data to be written to the

sector.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 53/65 11.7.2014

12. µtFAT File Management

To do...

In the meantime please us the µtFAT forum for questions and answers:
http://www.utasker.com/forum/index.php?board=10.0

13. Long File Name Support

Support for reading long file names (LFN) reading is activated by the define
UTFAT_LFN_READ. This means that files created with LFN can be accessed and displayed

by that name. Deleting LFN is also possible but the delete only deletes the short file name
part (the part compatible with FAT systems that only see the LFN as “FILENA~1.EXT”)

When the define UTFAT_LFN_DELETE is enabled deleting of the LFN part is also performed

to avoid leaving file name entries on the disk. Details about leaving undeleted LFN entries is
discussed later.

Deleting LFN files and renaming them to short file names is possible when
UTFAT_LFN_READ is enabled. Renaming LFN files to different LFNs is only possible when

the define UTFAT_LFN_WRITE is enabled. When an attempt is made to rename a file which

is in LFN format (it is possible that also file names which look to fit in the 8:3 format are
actually stored in LFN format) to a file that requires LFN results in the error
LFN_RENAME_NOT_POSSIBLE when this is not supported.

LFN renaming and writing is enabled by activating the project define UTFAT_LFN_WRITE.

This achieves full compatibility with LFN and SFN FAT16/32 file systems. Since LFN is
protected by patents the use of the full features may require a licensing agreement with
Microsoft so the full feature should be used only when the legal situation is clear. With the
define UTFAT_LFN_WRITE_PATCH a workaround is activated which limits compatibility with

older systems that can only work with SFN but is believed to avoid the patent issue. This is
the approach taken by Linux VFAT as detailed by the author at
https://lkml.org/lkml/2009/6/26/314 . Patent issues are never fully clear but if the Linux patch
sufficiently avoids infringement it is expected that this option will also stand up to the same
scrutiny. In any case, the user has final responsibility for what options are used in a particular
project.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 54/65 11.7.2014

13.1. Brief History of Long File Names

There are various articles about the history of LFN so this section is not going to repeat too
much detail but rather point out a few things that should be understood for compatibility with
systems supporting only LFN, only short file names (SFN) or both.

SNF has already been seen in operation whereby a single directory or file entry occupies a
single directory entry (DIR_ENTRY_STRUCTURE_FAT32), which is 32 bytes in size. There

are 11 bytes in the entry for the name and it is limited due to this to the well-known 8:3
format, where the last 3 bytes are understood as the extension and the first 8 (or less) as the
name. FAT systems that don’t understand LFN (like pre-Windows 95 software) must still be
able to work with the directories and files created by LFN and so the following trick is used to
ensure this basic compatibility:

A directory attribute entry (DIR_ENTRY_STRUCTURE_FAT32.DIR_Attr) with a

value of 0x0f is an invalid entry for a system that understands only SFN. This value
would mean that it is a “hidden, read-only system volume ID”, which is invalid and
ignored, meaning that the rest of the entry space can be used to save something else
– in this case the LFN part of the entry. Usually a LFN entry is constructed from a
number of entries following each other to allow file names of up to 255 UTF-16
characters to be used.

For compatibility also a short file name entry is added when a directory or file is created,
which follows the LFN entries. A system understanding only SFN will therefore simply skip all
of the LFN parts and use just the following SFN.

Note that the fact that LFN actually uses a LFN part and a SFN part is the central part of the
LFN patent.

Since a LFN will normally not fit into the name space in the SFN entry the actual file name
typically has to be shortened and this is known as the short file name alias of the long file
name. A LFN called “My +Long File A.txtFile” would be saved with the SNF alias

“MY_LON~1.TXT”. A second LFN called “My +Long File B.txtFile” in the same

directory would be saved with the SFN alias “MY_LON~2.TXT”, etc.

The rules for the alias are fairly straight forward:

- The extension is cut down to the maximum 3 position (txtFile was cut down to

txt).

- The first 6 letters (excluding spaces) are used.

- Any unsupported characters (+,;=[] are not allowed by SFN but are allowed by

LFN) are replaced by _.

- All characters are converted to upper-case.

- The final two characters in the name are set with ~1 as long as this file doesn’t

already exist in the same directory. If it does it will try ~2, etc. until it finds a name that

doesn’t conflict.

The result is a solution which allows files created by SFN systems to be used by SFN and
LFN systems. Files created by LFN systems can be used (although with an alias name) by
SFN systems. This solution is however not without its pitfalls:

- Older programs that cleaned up disks would recognise the LFN parts of files as
invalid and happily clean them up, hence losing the LFN information.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 55/65 11.7.2014

- Saving a LFN file under a new name with a SFN system will lose its original LFN
information.

- The SFN alias rules theoretically only allow 9 files with ‘similar’ LFNs to be used –
practically PCs will start adding random characters to fill the 3 characters before the
~.

- Systems that don’t understand LFN will delete only the SFN part of the file’s LFN
entry, leaving the LFN parts there. This may lose a small amount of space but could
be cleaned up later by a LFN aware system.
SFN systems may reuse deleted SFN entries at the end of the LFN part which then
doesn’t match the LFN – to avoid LFN systems from using such names the LFN entry
includes a check sum of the original LFN alias, as is described later.

- As will be seen below, the LFN needs to be stored in a linear area large enough to
hold the complete name. This makes reuse of deleted directory entries more
complicated since a hole of adequate size needs to be found to be able to hold the
new name. The result is that the directory area may grow larger than expected due to
such holes (deleted entry space that is not large enough to reuse for a new LFN).

- When LFN operation was first used there were some problems with older SFN
software that could mistake LFN entries in the root directory as volume IDs and so
displayed the volume ID incorrectly.

- Initially there was a risk of two long file named files saved with different names in two
different folders being give the same SFN aliases and then being saved in the wrong
folder, thus overwriting one of the original files with the content of a different one.
Users had to be very careful.

- Although there were some initial difficulties as LFN was first introduced in Windows
95 in regard to compatibility between old software and new file, and new software and
old files these are mostly irrelevant nowadays since such systems are legacy.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 56/65 11.7.2014

13.2. LFN Entries

Here we take a look as the LFN entry “My +Long File E.txtFile”, which is made up of

three directory entries following each other – they are displayed in little-endian long-word
format with each line showing a single directory entry of 32 bytes:

 0x45002042 0x74002e00 0x0f007800 0x00740500 0x00690046 0x0065006c 0x00000000 0xffffffff

 0x79004d01 0x2b002000 0x0f004c00 0x006f0500 0x0067006e 0x00460020 0x00000069 0x0065006c

 0x4c5f594d 0x317e4e4f 0x20545854 0xad43a300 0x40654065 0xacf80000 0x00004065 0x00000000

„MY_LON~1.TXT“

Looking at the directory attributes (with red background) the two LFN entries (0x0f) are
clearly visible, followed by a normal file entry (0x20). The entry with SFN alias together with
the file data/time, length and starting cluster holds the main information about the file itself.

Each LFN entry (there are two in this example) can be represented as follows:

typedef struct stLFN_ENTRY_STRUCTURE_FAT32

{

 unsigned char LFN_EntryNumber; // entry number starting from last - 0x40 is

 always set in first entry and the value

 decrements until 1

 unsigned char LFN_Name_0; // first letter

 unsigned char LFN_Name_0_extension; // first letter extension - is always 0 in English

 character set

 unsigned char LFN_Name_1; // second letter

 unsigned char LFN_Name_1_extension; // second letter extension

 unsigned char LFN_Name_2; // third letter

 unsigned char LFN_Name_2_extension; // third letter extension

 unsigned char LFN_Name_3; // fourth letter

 unsigned char LFN_Name_3_extension; // fourth letter extension

 unsigned char LFN_Name_4; // fifth letter

 unsigned char LFN_Name_4_extension; // fifth letter extension

 unsigned char LFN_Attribute; // always 0x0f

 unsigned char LFN_Zero0; // always zero

 unsigned char LFN_Checksum; // check sum

 unsigned char LFN_Name_5; // sixth letter

 unsigned char LFN_Name_5_extension; // sixth letter extension

 unsigned char LFN_Name_6; // seventh letter

 unsigned char LFN_Name_6_extension; // seventh letter extension

 unsigned char LFN_Name_7; // eighth letter

 unsigned char LFN_Name_7_extension; // eighth letter extension

 unsigned char LFN_Name_8; // ninth letter

 unsigned char LFN_Name_8_extension; // ninth letter extension

 unsigned char LFN_Name_9; // tenth letter

 unsigned char LFN_Name_9_extension; // tenth letter extension

 unsigned char LFN_Name_10; // eleventh letter

 unsigned char LFN_Name_10_extension; // eleventh letter extension

 unsigned char LFN_Zero1; // always zero

 unsigned char LFN_Zero2; // always zero

 unsigned char LFN_Name_11; // twelfth letter

 unsigned char LFN_Name_11_extension; // twelfth letter extension

 unsigned char LFN_Name_12; // thirteenth letter

 unsigned char LFN_Name_12_extension; // thirteenth letter extension

} LFN_ENTRY_STRUCTURE_FAT32;

 0x45002042 0x74002e00 0x0f007800 0x00740500 0x00690046 0x0065006c 0x00000000 0xffffffff

 0x79004d01 0x2b002000 0x0f004c00 0x006f0500 0x0067006e 0x00460020 0x00000069 0x0065006c

Looking only at the two LFN entries in the example it is seen that the entry number always
starts with the bit 0x40 set. In this case it is 0x42 because the LFN part consists of 2 entries.
The second entry is then numbered one less that the first (0x01), without the 0x40 bit set.
This makes it easy to see which of the entries is the first and to verify that they follow each

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 57/65 11.7.2014

other correctly. After the entry number 1, either 0x41 when there is only one LFN entry, or
0x01 when it is the final entry in the chain, the SFN alias is to be expected.

There is space for up to 13 characters in each entry. The characters are in UTF-16 format to
allow a large variety of character sets to be used. When only the English character set is
used the extension byte of each character is always 0.

Although it would be possible to have a maximum 0x3f (63) entries, each with up to 13
characters, giving a maximum LFN length of 819 (including a final null-terminator), a
maximum of 20 LFN entries is allowed, and a maximum of 255 characters.

There are 3 bytes that have to be set to 0x00 in each entry.

The check sum (0x05 in the example) is the same in each on the LFN entries because it is
calculated over the SFN alias. If the check sum doesn’t match the SFN alias found after the
LFN part it probably means that the SFN was deleted by a system not understanding LFN
(thus leaving the LFN part intact) and reused the deleted space at some point for a new file
name. The new SFN entry then is not related to the LFN part and the LFN part should be
ignored or could even be deleted by a system understanding LFN. The LFN system this
needs to check that the checksum value in the LFN part indeed matches with the value
calculated over the SFN alias following it.

When reading a valid LFN the individual characters are extracted from the chain of LFN
entries. This takes place in a reverse order, starting in the first entry. At the end of the entry
there are some 0xffff characters which represent padding because the name doesn’t
completely fill the entry. Then, reading from the end to the beginning, there is a 0x0000,
which is the null-terminator at the end of the file name. Continuing towards the start of the
entry and just considering the standard part of the UCF-16 characters the name of the file
can be collected in the reverse order:

0x65 ‚e‘

0x6c ‚l‘

0x69 ‚i‘

0x46 ‚F‘

0x74 ‚t‘

0x78 ‚x‘

0x74 ‚t‘

0x2e ‚.‘

0x45 ’E‘

0x20 ‚ ‚

0x65 ‚e‘

0x6c ‚l‘

0x69 ‚i‘

0x46 ‚F‘

0x20 ‚ ‚

0x67 ‚g‘

0x6e ‚n‘

0x6f ‚o‘

0x4c ‚L‘

0x2b ‚+‘

0x20 ‚ ‚

0x79 ‚y‘

0x4d ‚M‘

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 58/65 11.7.2014

13.3. Deleting LFN Entries

A SFN system can delete LFN names but such a system only deletes the SFN alias and file
information, meaning that the LFN part is left in the cluster. This is generally not a problem
since the space used up is not large on today’s SD cards. A LFN aware system could also
detect such lost LFN entry chains and clean them up if required.

When the define UTFAT_LFN_DELETE is enabled the µtFAT deletes the LFN part of the LFN

entry clusters when deleting a file, even when it is not configured to support writing LFNs.

The delete process means not just deleting the entry containing the SFN alias but also
deleting all previous LFN parts of the entry before it. To delete these, the first byte of each
entry is simply set to the free value of 0xe5.

The only complication in this process occurs when previous parts of the LFN reside in a
different cluster to the cluster that the SFN alias part is in. The complication arises from the
fact that clusters cannot be searched in a reverse direction. However this is quite simply
overcome by remembering the sector in which the first entry in the LFN entry chain was
found in when the LFN was handled (the LFN is always handled by running through its entry
chain). Furthermore, because there will never be more than 20 such entries there can only
be one possible cluster change in the process: 20 entries of 64 bytes requires a linear space
of 1280 bytes, which is smaller than the size of a cluster used in such systems. This means
that if a cluster boundary is encountered when deleting a LFN entry chain in the reverse
direction the next sector to use will be at the end of the cluster in which the first entry was in.

13.4. Renaming LFN Entries

Renaming long file names to short file names is quite simple because it means overwriting
the SFN alias with the new name. A LFN system will recognise that the non-deleted LFN part
is no longer associated with the SFN due to the fact that its check sum is no longer valid.
Both LFN and SFN systems will see only the new SFN.

When UTFAT_LFN_DELETE is enabled also the LFN part is deleted in an analogue manner

to the file deletion as described in the previous section.

If LFN support is not enabled for writing an attempt to rename a file to a LFN will result in the
error LFN_RENAME_NOT_POSSIBLE.

When LFN writing is enabled (UTFAT_LFN_WRITE), renaming existing files to LFNs is

essentially equivalent to creating a new LFN entry (see next section) but keeping the original
file content. The only thing that is slightly different is the fact that it may not be possible to
rename using the original entry location. If the size of the file name however needs to occupy
more entries than the original the complete location may need to be changed and the
complete original entry fully deleted. If possible the original LFN entries will be reused and
extended entries added to the end of it. If this is not possible because there is no space
following the original entry a completely new space must be found that is large enough for
the new name and the original file entry deleted. It is also possible that the allocation of
additional clusters becomes necessary for the directory increased directory space.

The following list illustrates the various cases that can exist when renaming a file in a system
supporting both SFN and LFN with an overview of the technique used. It is worth noting that
before a rename the directory needs to be searched to ensure that there is no file already
with the new name – this search is useful for collecting information that allows all possible

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 59/65 11.7.2014

cases to be simply resolved [the location of the end of the directory is known, the location of
deleted entries in the present directory are can be collected]:

1. Renaming SFN to SFN - The SFN can be modified directly.

2. SFN renamed to a LFN - The original SFN entry is not large enough for the new LFN
and so the new LFN needs to be relocated and the original SFN information
transferred to the SFN alias of the new LFN. The original SFN is marked as deleted. If
there is deleted space large enough to accept the new LFN it is used, or the new LFN
is located at the end of the directory.

3. LFN renamed to a SFN - The original SFN alias is used as new SFN while the original
LFN information is marked as deleted.

4. LFN renamed to a LFN with equal number of LFN entries - The original SFN alias is
used as new SFN alias and the LFN entries reused.

5. LFN renamed to a LFN with less number of LFN entries - The original SFN alias is
used as new SFN alias. The first LFN entry/entries are deleted and the rest used for
the new LFN entry/entries.

6. LFN renamed to a LFN requiring more LFN entries that the original name – The LFN
entries and SFN alias are marked as deleted. A new LFN is generated either in
deleted space adequately large to accept it or else at the end of the directory. The
original SFN alias information is transferred to the new SFN alias.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 60/65 11.7.2014

13.5. Creating new LFN Entries

New LFNs can be created when its support is defined by UTFAT_LFN_WRITE

New LFNs (or files renamed to LFNs as discussed in the previous section) are handled by
the rules introduced in this chapter. This means that a SNF alias is generated for the file
which doesn’t conflict with any other SFN aliases in the same directory and checksum for
that alias is calculated.

The number of directory entries to hold the LFN part plus the SFN alias (with the actual file
data information) is calculated and this space is identified in the directory. Either deleted
entries are used, if there are enough deleted linear entries found, or else new directory entry
space is identified at the end of the directory; this may involve extending the directory with
additional clusters as is the standard case when new data is added to a directory.

The LFN parts are written containing the LFN information as details in this chapters and the
SFN alias, containing the file’s data information, is written.

If the define UTFAT_LFN_WRITE_PATCH is enabled the SFN alias is not written using the

standard technique. This means that there is limited backward compatibility with systems that
only understand SFNs but this technique seems to avoid infringement of the LFN patents
which essentially covers the technique of saving file names as both short and long names at
the same time. Rather than devise a SFN alias according to the standard rules, eg.
“SHORTF~1.txt” the short file name is constructed using random characters from the invalid

file name character set. The result is that the short file names, and the file’s data information,
can still be used to verify that the entry belongs to the LFN part but old systems that can only
read SFNs will tend not to see the files at all since their names are invalid. The short file
name part can therefore not be considered a valid name and so

The technique therefore has some limits to its backward compatibility for legacy systems but
is usable in the majority of modern environments where such requirements make little sense.
It is understood that the invalid SFN alias doesn’t disturb modern file systems that are only
interested in the LFN part and the data that belongs to it but there are reports of the
technique being able to cause some older systems which do use LFN to crash – specifically
a Windows XP bug has been mentioned that causes a blue screen when attempting to read
such files. The algorithm chosen for the generation of the SFN alias minimises the triggering
of such bug through its choice of character values. Windows Vista and Windows 7 are not
know to have this bug.

The algorithm defined by the original author can be found at
https://lkml.org/lkml/2009/6/26/313

If a new file or a renamed file can be saved as a SFN this is always done in preference to a
LFN.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 61/65 11.7.2014

14. Data Caching and Speed Optimisations

The FAT interface includes a single sector buffer. Each time a new sector is read from the
SD card this buffer is overwritten and contains the last read content. Subsequent reads of the
same SD card sector don’t need to be read from the physical card since they are already in
the buffer.

Changes to the content of the present sector are always made to this RAM buffer up to the
point when the data is committed (SD card write). The sector is generally committed (when it
has been modified) when a new sector needs to be read.

This sector buffer avoids unnecessary physical read/writes from/to the SD card, which
consume time, and so results in a maximum efficiency when the operation is restricted to a
single sector of the card. Since a single sector is often used by directory structures this
automatically keeps the amount of writes during directory object manipulations to a minimum.

However, since file operations tend to require interleaved data and file object manipulations,
as well as FAT operations, there are often instances where the sector buffer has to be
frequently exchanged and so more physical read and write operations performed. In order to
be able to better control this behaviour each file that is opened can be defined its own
personal operational characteristics and optional data cache.

When a file is opened with the attribute UTFAT_COMMIT_FILE_ON_CLOSE it causes changes
to the file’s object to be avoided until the file is closed. This allows writes and other changes
to be made to the data content without the need to maintain the file’s object on disk – the file
object is maintained locally in the file object only. Avoiding the physical file object update on
every file content modification can result in much reduced physical access. Only when the
file is closed is the physical file object finally committed. When using the file in this mode it is
therefore important to close it after use and it is to be noted that a reset before closing the file
will result in new data being lost – it is physically on the disk but the file would still show its
old size. This compromise between speed and reliability needs to be considered in each
case.

When writing file data to the SD card it is most efficient when each write is aligned to either a
single sector or else a multiple of sectors; SD card sectors are always 512 bytes in size and
aligned on 512 byte boundaries [writing a new file always with 512 bytes blocks results in
optimal performance]. In this case each write is a natural size with optimal efficiency. In some
cases however small amounts of data need to be written and or modified, which means that
there is generally a requirement to read the physical content, modify and commit again,
which can result in a high number of physical read/writes and the inherent delays involved. In
such cases a dedicated additional data cache for the file can be of interest. When a file is
opened with the attribute UTFAT_WITH_DATA_CACHE (only available with option

UTFAT_FILE_CACHE_POOL) the file is allocated its own sector buffer (when available) and modified
data is only committed to the disk when the sector is changed. Reads from the sector (also from other
users accessing the file) are taken from the sector buffer (data cache) when its content is up to date.
This can generally improve read speed if the reads access cached data and can avoid the need to
read/write physical data, especially when numerous small writes are performed.

When multiple users work with the same file, with or without their own data cache, all caches are
automatically synchronised so that data remains coherent.

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 62/65 11.7.2014

15. Expert Functions

Expert functions are optional capabilities that are activated by enabling the define

UTFAT_EXPERT_FUNCTIONS. These functions are especially useful when studying FAT operation or
investigating cases of possible data corruption.

In addition to the standard “dir” command a “dird” command allows deleted content to be listed.
Since deleted content space may be reused with time deleted files may not always be visible with as
use continues.

Eg.

D:\>dir

Directory D:\

---A 01.01.2014 12:00 1536 long_file_1.txt

---A 01.01.2014 12:00 768 SHORT_1.TXT

2 files with 2304 bytes

0 directories, 1986248704 bytes free

This shows two existing files in a directory.

D:\>dird

Directory D:\

[D]---A 01.01.2014 12:00 768 long_file_0.txt

[D]---A 01.01.2014 12:00 256 ~HORT_0.TXT

2 files with 1024 bytes

0 directories, 1986248704 bytes free

This shows that there are two deleted file in the directory (that could possibly be recovered). Long file
are often visible with their original name whereas short files lost their first letter. Depending on how
deleted spaces are reused it is possible deleted files are either no longer visible or their names
become corrupted. It is also possible to find multiple deleted files with the same name.

The command “infof” display details about a file or directory.

“infod” displays details about a deleted file or directory.
Eg.

D:\>infof short_1.txt

File: short_1.txt is SFN

SNF File located at entry 0x0c in sector 0x00001e01 (cluster 0x00000002)

Data = 0x53 0x48 0x4f 0x52 0x54 0x5f 0x31 0x20 0x54 0x58 0x54 0x20 0x00

0x00 0x00 0x60 0x21 0x44 0x21 0x44 0x00 0x00 0x00 0x60 0x21 0x44 0x03 0x00

0x00 0x03 0x00 0x00

SFN name (archive) = SHORT_1 TXT

File length = 768 starting in sector 0x00001e09 (cluster 0x00000003) FAT

sector 0x0000005f offset 0x03

D:\>infof long_file_1.txt

File: long_file_1.txt is LFN

Starting at entry 0x01 in sector 0x00001e01 (cluster 0x00000002)

First object from 2

Data = 0x42 0x78 0x00 0x74 0x00 0x00 0x00 0xff 0xff 0xff 0xff 0x0f 0x00

0x4e 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0x00 0x00

0xff 0xff 0xff 0xff

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 63/65 11.7.2014

Data = 0x01 0x6c 0x00 0x6f 0x00 0x6e 0x00 0x67 0x00 0x5f 0x00 0x0f 0x00

0x4e 0x66 0x00 0x69 0x00 0x6c 0x00 0x65 0x00 0x5f 0x00 0x31 0x00 0x00 0x00

0x2e 0x00 0x74 0x00

SNF File located at entry 0x03 in sector 0x00001e01 (cluster 0x00000002)

Data = 0x20 0x00 0x0b 0x0f 0x05 0x13 0x12 0x1d 0x2f 0x00 0x00 0x20 0x00

0x00 0x00 0x60 0x21 0x44 0x21 0x44 0x00 0x00 0x00 0x60 0x21 0x44 0x04 0x00

0x00 0x06 0x00 0x00

SFN name (archive) = /.. Alias CS = 0x4e

File length = 1536 starting in sector 0x00001e11 (cluster 0x00000004) FAT

sector 0x0000005f offset 0x04

The existing SFN and LFN files are analysed and their details on the disk given. Subsequent use of

the “sect” command allows the raw data to be viewed at these locations if needed.

The following shows similar examples of the analysis of these two files once they have been deleted.

D:\>infod long_file_1.txt

File: long_file_1.txt is LFN

Starting at entry 0x01 in sector 0x00001e01 (cluster 0x00000002)

Deleted LFN

Data = 0xe5 0x78 0x00 0x74 0x00 0x00 0x00 0xff 0xff 0xff 0xff 0x0f 0x00

0x4e 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0xff 0x00 0x00

0xff 0xff 0xff 0xff

Deleted LFN

Data = 0xe5 0x6c 0x00 0x6f 0x00 0x6e 0x00 0x67 0x00 0x5f 0x00 0x0f 0x00

0x4e 0x66 0x00 0x69 0x00 0x6c 0x00 0x65 0x00 0x5f 0x00 0x31 0x00 0x00 0x00

0x2e 0x00 0x74 0x00

Deleted LFN

End

SNF File located at entry 0x03 in sector 0x00001e01 (cluster 0x00000002)

Data = 0xe5 0x00 0x0b 0x0f 0x05 0x13 0x12 0x1d 0x2f 0x00 0x00 0x20 0x00

0x00 0x00 0x60 0x21 0x44 0x21 0x44 0x00 0x00 0x00 0x60 0x21 0x44 0x04 0x00

0x00 0x06 0x00 0x00

SFN name (archive) =/.. Alias CS = 0x4e

File length = 1536 starting in sector 0x00001e11 (cluster 0x00000004) FAT

sector 0x0000005f offset 0x04

D:\>infod ~HORT_0.TXT

File: ~HORT_0.TXT is SFN

SNF File located at entry 0x0c in sector 0x00001e01 (cluster 0x00000002)

Data = 0xe5 0x48 0x4f 0x52 0x54 0x5f 0x31 0x20 0x54 0x58 0x54 0x20 0x00

0x00 0x00 0x60 0x21 0x44 0x21 0x44 0x00 0x00 0x00 0x60 0x21 0x44 0x03 0x00

0x00 0x03 0x00 0x00

SFN name (archive) = .HORT_1 TXT

File length = 768 starting in sector 0x00001e09 (cluster 0x00000003) FAT

sector 0x0000005f offset 0x03

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 64/65 11.7.2014

16. Conclusion

The operation of SD-cards and FAT has been described in enough detail for users to
understand the internal workings of µtFAT V2.0. µtFAT can be configured to work with
various features allowing basic operation in simple systems neither requiring long file name
(LFN) support nor write operation (smallest code requirements) through systems which
necessitate full long file name capabilities, optimised performance and expert functions to
monitor and analyse the SD card / FAT contents.

The user interface to µtFAT V2.0, allowing applications to efficiently utilise the operations in
a simple and logical manner, haS been described with use examples.

V0.08 adds a complete list of user interface commands and reworked description of FAT32
operation, plus notes about SDIO interface support.

V0.09 adds LFN details.

V0.10 adds LFN rename and creation.

V2.00 adds utTruncateFile(), LFN rename details, data caching and description of expert
functions

www.uTasker.com µTasker – utFAT and SD-card Interface

uTasker_utFAT.doc/V2.00 65/65 11.7.2014

17. Disclaimers

The information contained in this document is presented only as an overview of SD
cards and FAT32 and is provided "AS-IS" without any representations or warranties
of any kind. No responsibility is assumed by the µTasker developers for any
damages or infringements of patents which may result from its use. No license is
granted by the µTasker developers implication, estoppel or otherwise under any
patent or other rights of the µTasker developers or any third party. Nothing herein
shall be construed as an obligation by the µTasker developers to disclose or
distribute any technical information, know-how or other confidential information to any
third party.

The µtFAT module is offered “AS-IS” for users of the µTasker project for hobby
and/or commercial work. In the case of commercial applications a basic µTasker
commercial license for the used processor is implied. The module is supported by the
µTasker developers and all attempts will be made to correct any operation which
proves to be faulty but the licensee/user accepts that no claims for compensation
may be made, for any reasons whatsoever, whether due to µTasker code, its
environment and tools or use thereof.

To this effect please ensure that development work is not performed with SD cards
containing important data – potential data loss can be simply avoided by using SD
cards reserved exclusively for experimental and development work; please adhere to
this simple rule and have fun with the µtFAT module!

