

uTaskerV1.4_Kinetis_demo/0.18 Copyright © 2012 M.J.Butcher Consulting

Embedding it better...

µTasker Document

• Kinetis demo user’s guide

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 2/52 27.10.2012

Table of Contents
Introduction ..3

1. Preparing to start ...3

2. Compiling the µTasker Demo using CodeWarrior v10.2 ...4

3. Compiling the µTasker Demo using IAR6 ..5

4. Compiling the µTasker Demo using Rowely Crossworks 2.1 ..6

5. Compiling the µTasker Demo using Keil uVision 4.14 ...7

6. Compiling the Project in VisualStudio C++ and with GCC ...8

7. Recommended Jumper Settings on the TWR-K60N512, TWR-K60F120M and

K70F120M ...9

8. uGLCDLIB TFT demo ... 10

9. USB CDC demo ... 11

10. Ethernet ... 12

11. SD Card ... 14

Configuring the µTasker project to support firmware upload .. 15

12. Simulating the Kinetis K60 with the SW demo pack executable 16

13. Conclusion ... 17

Appendix A – Developer’s Notes ... 18

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 3/52 27.10.2012

Introduction

The µTasker project has been extended to include support of the Freescale Kinetis family of
devices.

This guide explains how to start using the project together with these devices based on the
TWR-K60N512 board either stand-alone or together with the Tower kit, including USB,
Ethernet and TFT display with touch screen.

The project includes IAR6, Rowley Crossworks 2.1, Keil uVision 4.14 and Codewarrior v10.2
(based on Eclipse) configurations as well as a stand-alone GCC make file build. In addition it
allows the Kinetis and external peripherals such as the TFT display to be simulated in the
µTasker using VisualStudio.

Appendix A contains developer’s notes concerning the Kinetis devices and also details about
the operation of the µTasker projects hardware related code for these parts.

1. Preparing to start

The minimum HW requirements for starting with the µTasker project on the Kinetis K60N512
is the TWR-K60N512 module for the tower kit. This module can be powered via USB and
includes an on-board OSJTAG debugger which allows loading code and debugging with
either IAR6, Rowley Crossworks, uVision or Codewarrior v10.2.

When no board is available, but also generally for high-speed project development, the
µTasker simulator (based on Microsoft VisualStudio) can be used to simulate the processor
and its peripherals for improved debugging, code development and verification efficiency.

If the complete Tower Kit is available, the TWR-K60N512 module can be used in
combination with this in order to work with extended peripherals.

The first steps thus involve installing the software:

• VisualStudio C++ [µTasker simulator IDE]

• IAR6 [IDE]

• Codewarrior v10.2 [IDE]

• Rowely Crossworks for ARM V2.1 [IDE]

• Keil uVision4 for ARM V4.14 [IDE]

• P & E Kinetis Tower Toolkit [various utilities and OSJTAG drivers]

The IDEs are optional and so not all need to be installed. The P & E Kinetis Tower Toolkit
should be installed (included on the CD delivered with the TWR-K60N512 board) to ensure
that the debugger drivers are available.

Once the software installation has completed (a system restart may also be required) the
TWR-K60N512 can be connected to the development PC via its USB device adapter (J13)
and will be recognised as OSBDM debug port. Any pre-installed software on the board will
now also run, allowing verification that the hardware is operational.

Since the K60N512 has 128k of SRAM it is possible to execute fairly interesting code directly
from RAM rather than having to program the FLASH. As soon as the program size and its
use of SRAM exceeds this amount, the project needs to be loaded to FLASH and executed
from there.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 4/52 27.10.2012

2. Compiling the µTasker Demo using CodeWarrior v10.2

The µTasker software can be obtained on request from
www.uTasker.com/Licensing/request.html.

The project is free of charge for all non-commercial use and can be evaluated for a period of
30 days for commercial purposes. Full licensing details can be read at
www.uTasker.com/Licensing/License.html

Precompiled target code is freely available of the software resource page:
www.uTasker.com/software/software.html which can loaded to the board without the need to
compile it.

The first time that Codewarrior is started it requires a workspace to be defined. The
workspace can be located anywhere and the project will later be imported into the
workspace.

Once Codewarrior has started, the µTasker project can be imported. This is achieved by
selecting the context menu (right mouse click) in the “CodeWarrior Projects” window and
commanding “Import…”. In the import dialog the action “General | Existing Projects into
Workspace” can be selected and then the root directory set to uTaskerV1.4 project directory.
The import doesn’t need to copy the project to the workspace.

Once the import has been executed the project is seen as uTaskerV1.4 in the CodeWarrior
Project window, with two targets “MK60N512VM100_INTERNAL_FLASH” and
“MK60N512VM100_INTERNAL_RAM”.

Ensure that the target board is configured for the TWR-K60N512 board in the µTasker V1.4
project file config.h as follows:

#define TWR_K60N512 must be active to select the Tower board.

The project is compiled by clicking on the build button (Ctr + B will start a complete build).

The target code size is about 89k when Ethernet [including FTP, Web server, Telnet and
uFileSystem], USB and TFT are active.

Smaller projects can be loaded and executed from SRAM but larger projects will need to be
loaded to FLASH (MK60N512VM100_INTERNAL_FLASH configuration), which can be
performed by executing the debug command (configure as default to load to FLASH using
the OSJTAG interface).

CodeWarrior also supports loading ELF or SREC files with its Flash Programmer utility.

The project is configured to place output data (elf, s19, map file etc.) in the project directories
\uTaskerV1.4\Applications\uTaskerV1.4\KinetisCodeWarrior\MK60N512VMD

100_INTERNAL_FLASH or
\uTaskerV1.4\Applications\uTaskerV1.4\KinetisCodeWarrior\MK60N512VMD

100_INTERNAL_RAM.

Note that minor hardware modifications may be required to run the TFT demo – see the
section about the TFT demo for more details.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 5/52 27.10.2012

3. Compiling the µTasker Demo using IAR6

The µTasker software can be obtained on request from
www.uTasker.com/Licensing/request.html.

The project is free of charge for all non-commercial use and can be evaluated for a period of
30 days for commercial purposes. Full licensing details can be read at
www.uTasker.com/Licensing/License.html

Precompiled target code is freely available on the software resource page:
www.uTasker.com/software/software.html which can loaded to the board without the need to
compile it.

Open the project \Applications\uTaskerV1.4\IAR_Kinetis\uTaskerV1.4.ewp in

IAR Embedded Workbench. Select the target Debug to run from SRAM or Release to run

from FLASH and ensure that the target board is configured for the TWR-K60N512 board in
the µTasker V1.4 project file config.h as follows:

#define TWR_K60N512 must be active to select the Tower board.

Compile the project by pressing F7 (Project | make) or by clicking on the “Make” icon.

The project should build with no errors but there may be some warnings which can be
ignored. The target code size is about 78k when Ethernet [including FTP, Web server, Telnet
and uFileSystem], USB and TFT are active.

In case the kick-start version is used (limited to 32k) either Ethernet can be deactivated by
disabling ETH_INTERFACE in config.h or the TFT display can be deactivated by disabling
SUPPORT_GLCD in config.h.

The debugger “PE Micro” should be selected and the code can be loaded to the board via
the OSJTAG connection by clicking on the “Download and Debug” icon (with green arrow).
Depending on the target selected this will be loaded either to SRAM or programmed to
FLASH.

Note that minor hardware modifications may be required to run the TFT demo – see the
section about the TFT demo for more details.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 6/52 27.10.2012

4. Compiling the µTasker Demo using Rowely Crossworks 2.1

The µTasker software can be obtained on request from
www.uTasker.com/Licensing/request.html.

The project is free of charge for all non-commercial use and can be evaluated for a period of
30 days for commercial purposes. Full licensing details can be read at
www.uTasker.com/Licensing/License.html

Precompiled target code is freely available of the software resource page:
www.uTasker.com/software/software.html which can loaded to the board without the need to
compile it.

Open the project
\Applications\uTaskerV1.4\Rowley_Kinetis\uTaskerV1_4.hzp in Crossworks

for ARM V2.1. Ensure that the target board is configured for the TWR-K60N512 board in the
µTasker V1.4 project file config.h as follows:

#define TWR_K60N512 must be active to select the Tower board.

Compile the project by pressing F7 (Build | Build uTaskerV14) or by clicking on the

“Build” icon. The project should build with neither errors but there may be some warnings
which can be ignored. The target code size is about 82k when Ethernet [including FTP, Web
server, Telnet and uFileSystem], USB and TFT are active.

The debugger “Kinetis OSJTAG” should be selected and the code can be loaded to the
board via the OSJTAG connection by clicking on the “Start Execution” icon (with blue arrow)
– (F5)

 Note that minor hardware modifications may be required to run the TFT demo – see the
section about the TFT demo for more details.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 7/52 27.10.2012

5. Compiling the µTasker Demo using Keil uVision 4.14

The µTasker software can be obtained on request from
www.uTasker.com/Licensing/request.html.

The project is free of charge for all non-commercial use and can be evaluated for a period of
30 days for commercial purposes. Full licensing details can be read at
www.uTasker.com/Licensing/License.html

Precompiled target code is freely available of the software resource page:
www.uTasker.com/software/software.html which can loaded to the board without the need to
compile it.

Open the project
\Applications\uTaskerV1.4\uVision_Kinetis\uTaskerV1.4.uvproj in Keil

uVision4.

Ensure that the target board is configured for the TWR-K60N512 board in the µTasker V1.4
project file config.h as follows:

#define TWR_K60N512 must be active to select the Tower board.

Compile the project by pressing F7 (Project | Build target) or by clicking on the

“Build” icon. The project should build with no errors but there may be some warnings which
can be ignored. The target code size is about 52k when Ethernet [including FTP, Web
server, Telnet and uFileSystem], USB and TFT are active.

In case the evaluation version is used (limited to 32k) either Ethernet can be deactivated by
disabling ETH_INTERFACE in config.h or the TFT display can be deactivated by disabling

SUPPORT_GLCD in config.h.

The present version of uVision4 doesn’t support the OSJTAG interface and so requires a
JTAG debugger to be connected (warning – the TWR-K60N512 has a fine-pitch 20 pin
CORTEX connector which may require an additional adapter to connect to standard debug
cables).

Note that minor hardware modifications may be required to run the TFT demo – see the
section about the TFT demo for more details.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 8/52 27.10.2012

6. Compiling the Project in VisualStudio C++ and with GCC

The µTasker simulator operates with VisualStudio C++ from version 6.0 and upwards,
including the free VisualStudio Express editions. This operation is detailed in the document
http://www.utasker.com/docs/KINETIS/uTaskerV1.4-Tutorial-Kinetis.PDF

The VisualStudio environment includes also a very powerful editor and the capabilities to add
post-build steps which are suitable for cross-compiling to the target hardware. As detailed in
the tutorial in the link above, a target is included which will automatically perform this stage to
generate a standalone binary image using the GNU compiler, plus images suitable for
downloading to the target with boot loader support.

As long as the GNU compiler is installed on the PC, the project can be comfortably built from
the VisualStudio environment with GCC. In this case the target configuration “Win32

uTasker kinetis plus GNU build” should be selected.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 9/52 27.10.2012

7. Recommended Jumper Settings on the TWR-K60N512, TWR-
K60F120M and K70F120M

The TWR-K60N512 board can be used standalone but its functions are only limited since it
doesn’t have many peripherals that are readily accessible and it also doesn’t have any on-
board Ethernet physical layer device or socket. When running as standalone board the CPU
is supplied with a 50MHz clock signal from a local oscillator Y1.

If the board is inserted into the tower kit and is to use the Ethernet connection on the serial
board (TWR-SER) it should use a 50MHz signal supplied by the serial board via the back
plane as clock. This is the 50MHz signal that is used by the PHY on the serial board, which
should be synchronised to the CPU clock for proper Ethernet operation. (See the appendix
section on Ethernet for more details).

The K60 Ethernet connection is RMII (reduced media-independent interface) and the TWR-
SER board must also be correctly configured in this mode for Ethernet operation. These two
configurations are shown in the following jumper table.

 TWR-K60N512/
TWR-K53N512

TWR-K60F120M/
TWR-K70F120M

TWR-SER

Stand-alone
operation

J6 1-2 (K60)
J17 ON (K53)

Local 50MHz
oscillator input

J18 ON (K60) or
J19 ON (K70)

Local 50MHz
oscillator input

Not applicable

Ethernet RMII
operation

J6 2-3 (K60)
J17 OFF (K53)

PHY Clock via
backplane

J18 OFF (K60) or
J19 OFF (K70)

PHY Clock via
backplane

J2 3-4 selects 50MHz clock for
the PHY and the backplane

J3 2-3 Enables 50MHz clock to
drive backplane line CLOCKIN0

J12 9-10 Sets a pull-up on the
PHY’s CONFIG0 strap input to
configure it to RMII mode

J6 7-8 IRQ1 interrupt line for PHY
interrupt*

Ethernet MII
operation

This is not possible
with the TWR-
K60N512/TWR-
K53N512 but is
used with the
Kirin3 processor
board

This is not
possible with the
TWR-K60F120M/
TWR-K70F120M
but is used with
the Kirin3
processor board

J2 1-2 selects 25MHz clock for
the PHY (MII mode)

J3 2-3 – none connected

J12 9-10 – none connected

J6 7-8 IRQ1 interrupt line for PHY
interrupt

*The interrupt line from the PHY on the TWR-SER card can be connected to several
backplane lines. J6 7-8 should be selected on the TWR-SER board so that the IRQ1 line is
selected. This is connected to port PA.27 on the K60 on the TWR-K60N512 board and PB.07
on the TWR-K53N512, TWR-K60F120M and TWR-K70F120M boards.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 10/52 27.10.2012

8. uGLCDLIB TFT demo

In order to see the TFT in operation the project define SUPPORT_GLCD can be set. The TFT

is selected by enabling TFT2N0369_GLCD_MODE.

Figure 1 - TFT mono-chrome emulation mode being simulated in the µTasker simulator

In order to work with the TFT display on the TWR-LCD extension board via 16-bit FlexBus it
is necessary to isolate the line FB_AD9 from the Infra-Red input circuitry. This can be
done by removing R14 and C2 from the board or by cutting the track CMP0_IN0 (between
C2 and the back plane). With the circuitry connected the 100nF capacitor C2 otherwise
heavily loads the FB_AD9 line and so doesn’t allow the bus to operate correctly at normal
bus frequencies. With the modification the TFT can be controlled with a maximum FlexBus
clock speed of 50MHz without any additional wait-states.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 11/52 27.10.2012

9. USB CDC demo

The USB CDC device demo is described in detail in the document:
http://www.utasker.com/docs/uTasker/uTaskerV1.3_USB_Demo.PDF

When asked for the USB driver, use the file uTaskerFreescaleVirtualCOM.inf. This is

contained in the SW demo pack or in the project directory
\Applications\uTaskerV1.4\USB.

The demo document also explains loading new firmware via USB. For details about loading
firmware via Web Browser and also configuring the project in CodeWarrior see the following
sections of this document.

The guide explains also the µTasker simulator’s capability to simulate the USB part of the
project, where the following shows the simulator running with enumerated USB.

Figure 2 – uTasker simulator running Kinetis, showing enumerated USB state

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 12/52 27.10.2012

10. Ethernet

The Ethernet part of the µTasker project is detailed in the Kinetis tutorial:

http://www.utasker.com/docs/KINETIS/uTaskerV1.4_Kinetis_demo.PDF

The tutorial contains a description of working with the µTasker simulator to fully test this
functionality as well as compiling with CodeWarrior and GCC. The web pages are discussed
in detail but not the method of configuring the project to work with firmware uploads. The
following section contains details relevant to this task.

The web pages for the Ethernet demo are contained in the SW demo pack in the sub-
directory WebPages. The default IP address if 192.168.0.3 with sub-net mask
255.255.255.0. If this doesn’t suit your test network it can be change in the command line
interface via UART or USB:

- Enter the “Configure LAN Menu” by entering 1 followed by the ENTER key.

- With the command “show_config” the present configuration can be displayed.

- Use “set_ip_address 192.168.1.125” to change the IP address to

192.168.1.125 (example IP address – set to a value suitable for your network).

- With “save” this is committed to parameter FLASH, which will cause the board to

reset and restart.

- Now test that you can ping the new address. If successful, enter into the “Configure

LAN Menu” again and validate the new setting by commanding “validate”. This

will now commit this new address to be used permanently. Note that the new settings
should be validated within a period of three minutes otherwise the temporarily saved
ones will be deleted and original ones returned. See the µTasker tutorial for a full
explanation of the reasons for this procedure.

- Note also that the board can be configured to obtain its IP configuration from a DHCP
server “set_dhcp enable”. As long as the sub-net settings match the network it is

also possible to communicate with the board using its NetBIOS name “KIRIN3” (eg.

“ping KIRIN3”) without needing to know its IP address. The NetBIOS name can

later be changed in the web server.

- To load the web pages to the target use the bat file Copy_all.bat, which is

included in the SW demo pack or else can be found in the project directory
\Applications\uTaskerV1.4\WebPages\WebPagesKinetis. If the IP address

of the target has been changed, the IP address setting in the bat file will also need to
be modified accordingly. The bat file will automatically transfer all web pages to the
target via FTP, after which the board can be browsed using a normal web browser.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 13/52 27.10.2012

The Ethernet section of the demo contains the following main features:

• TELNET (command menu is accessible via TELNET and debug output is switched to
it when connected)

• Web Server with demonstration of dynamic content generation, control of ports, email
configuration and transmission via web command (SMPT). Display of user loaded
images and firmware upload via HTTP POST.

• FTP server for loading web pages and firmware upload.

• NetBIOS - can be contacted by name KIRIN3 (name configurable via web server)

• DNS (for SNMP provider resolution)

• Default IP address 192.168.0.3 (subnet mast 255.255.255.0) – can be configured to
other IP configuration via USB or UART menu, including DHCP.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 14/52 27.10.2012

11. SD Card

The demo project optionally supports a FAT file system on an SD card. This allows web
complicated pages to be served from there, rather than form internal FLASH, and also allows
a slide-show to be displayed on the TFT display.

There are two SD card slots available:

- The first is on the Kinetis K60 board and is connected to the SD controller interface of the
K60, as well as to SPI1. When the demo is working in SPI mode the operation of this slot is
only possible when pins 2 and 7 of the SD card connector are swapped since the SPI1
MOSI/MOSI are otherwise incorrect. WARNING: Newer Tower kits may have the write
protect switch of the SD card connected to the reset output (allowing the processor to reset
external peripherals in the kit via the port output PTB1). In this case, when the write protect is
not set in the SD card it will cause external boards to be held in reset. See the following for
more details and work-around:
http://www.utasker.com/forum/index.php?topic=1737.msg6228#msg6228

- The second is the uSD card slot on the TFT extension board. This is also connected to
SPI1 on the Kinetis. To use as interface in SPI mode it is possible that the signals also need
to be crossed; in this case check whether the SPI1_SOUT signal is connected to the
backplane at B10 or B11. To do this, measure it on the board since it has been found that the
board doesn’t necessarily correspond with the circuit diagram (Rev. C). SPI1_OUT needs to
be connected with B10 and SPI1_SIN with B11.

In case the TWR_LCD board is connected the switch SW1-4 much be set accordingly as
shown in the following diagram:

CS 1
5

2
7

SCLK
DI
DO

KINETIS K60
PE.4

SCI1_SCK / PE.2
SCI1_SOUT / PE.1

SCI1_SIN / PE.3

Backplane (Elevator)

B
9

B
7

B
1
0

B
1
1

J9
971011

Cross lines to
use in SPI mode

J5
TWR-LCD

971011

2
5

3
7

uSD-CSn
uSD-SCLK
uSD-MISO
uSD-MOSI

SW1-4 (close to enable drivers)

When TWR-LCD board is connected and the
SD card on the Kinetis board is used SW1-4
must be in OFF position. It must be in the ON
position when using the SD card om the
TWR-LCD board

Possibly cross
lines to use SPI mode with uSD card on
TWR-LCD board, depending on board layout

SD-card

uSD-card

Figure 3 – Connection to SD cards and setting for SW1-4 on the TWR-LCD board

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 15/52 27.10.2012

Configuring the µTasker project to support firmware upload

The pre-compiled target file uTaskerV1.4_KINETIS_USB_ETHERNET.S19 from the SW

demo pack already contains the µTasker boot loader and the complete application. In this
case firmware uploads can already be tested by using the following two files in the SW demo
pack:

- z_Upload_3.bin. This is the same application but with a version number V1.4.003..

By checking the version number displayed in the web browser or via the command
menus (UART, TELNET or USB) it is possible to verify that a firmware upload has
been successful.

- z_Upload_2.bin. This is the application contained in the original target file which

can be reloaded after testing z_Upload_3.bin or. This then displays the original

version number V1.4.002.

In order to compile software to upload to the target a different target is required. The
corresponding target is KINETIS_BM_ROM (Bare-minimum boot loader target). For full details

about working with this and also the boot loader project see the boot loader documents

http://www.utasker.com/docs/uTasker/uTaskerBoot_003.PDF

and

http://www.utasker.com/docs/uTasker/BM-Booloader_for_M5223X.PDF

The target to select in the CodeWarrior boot loader project is M5225X_ROM.

To be noted are following settings for the boot loader project:

- in config.h the defines #define KIRIN3 and #define _M5225X should be

active. The first one sets the application start address to 0x1000 (after the first 4k
FLASH block in the Kirin3 device) and the second configures the memory map
accordingly. Note that the define KIRIN3 also automatically disables the assembler
file workaround for the internal FLASH speculation address qualification incomplete
errata of earlier M522XX devices.

- The demo project uses the following memory map:
Boot loader occupies 2k (0..0x7ff).
Application space is 128k (0x1000..0x16aff).
Parameter system occupies 2 x 2k sectors (0x21000..22fff)
The file system occupies 372k (0x23000..7ffff), whereby the last 128k
(0x60000..0x7fffff) is intended for accepting secure firmware upload

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 16/52 27.10.2012

12. Simulating the Kinetis K60 with the SW demo pack executable

In order to allow new users to quickly see how the µTasker simulator operates, an
executable is included in the corresponding SW demo pack. This can be found in the sub-
directory \Simulator and started by simply double-clicking on uTaskerV1-4-KINETIS-

Sim.exe.

The simulator doesn’t need any installation but does require WinPCap to be installed on the
PC. If you already have WireShark installed (which also uses it) no further effort is required,
otherwise this can be found at http://www.wireshark.org/

The simulator will be displayed as show in the screen shot earlier in this document. It has a
default IP address of 192.168.0.1 and opens COM1 on the PC as UART0. This means that
by connecting a cross-over cable to COM1 (or by using a virtual com port loop back to it) you
can communicate with a terminal emulator (19’600 Baud) and change any settings if needed,
as already described in this document and the other guides it links to. When the simulator
program is terminated it will always save its complete simulated FLASH contents so that the
new settings are valid the next time it is started.

You will need first to configure the PC’s NIC (Network Interface Card) that it should use for
mapping the Kinetis Ethernet controller to – do this in the “LAN” menu with “Select Working
NIC”. This setting will also be saved and thus needs only be entered once.

Then use the bat file, as described in the chapter “Ethernet”, to transfer the web pages to the
simulated device via FTP. After this has been done, connect to its IP address using a
standard browser and see the project in operation!

The simulator allows comfortable project development and testing in the VisualStudio
environment and the complete project is included as part of the µTasker package.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 17/52 27.10.2012

13. Conclusion

This document has given a quick introduction to compiling and loading the demo software to,
and running it on, the TWR-K60N512 (in combination with the Freescale Tower Kit or stand-
alone). As well as giving simple instructions as to how to verify that the software is correctly
running is has given links to further documents containing detailed descriptions concerning
the use of the USB and the Ethernet parts of the demo, as well as how the project can be
configured to enable support of the firmware upload features via USB and Ethernet.

A short guide to using the simulator executable, as included in the SW demo pack, has also
been given.

Modifications:
- V0.0 23.12.2011 First version – in progress
- V0.01 9.1.2011 Intermediate version – in progress
- V0.02 14.1.2011 Intermediate version – in progress
- V0.03 25.1.2011 Intermediate version – first developer’s version
- V0.04 29.1.2011 Intermediate version – developer’s version with new port interrupt details
- V0.05 30.1.2011 Intermediate version – developer’s version with new PIT details
- V0.06 4.2.2011 Intermediate version – developer’s version with new watchdog and reset
details as well as UART restrictions
- V0.07 10.3.2011 Intermediate version – developer’s version with new RTC, ADC, DAC, I2C
details
- V0.08 23.3.2011 Intermediate version – developer’s version with new SPI details
- V0.09 2.4.2011 Intermediate version – developer’s version with new UART RTS/CTS
details. DMA uMemcpy(), uMemset() and mass erase command support
-V0.10 10.4.2011 Add notes about using the SD card in SPI mode and the operation of the
SPI interface
-V0.11 25.04.2011 Add details about SPI control and timing of the SPI FLASH driver
- V0.12 13.08.2011 Add K40 notes and SLCD
- V0.13 20.10.2011 Add RTC API details and EMAC IP accelerator details, as well as RMII
PHY synchronisation
V0.14 03.02.2012: Dual FlexCAN added. FlexTimer PWM notes added.
V0.15 17.03.2012: Added K60F120M, K70F120M and K53N512 boards and details about
clock module differences in the high speed parts with FPU. Extended ADC details.
V0.16 27.04.2012 Added notes about different Flash sector sizes in FPU device and DMA
details
V0.17 23.6.2012 Added UART3 option on port F for K70. Added notes about
RMII_REF_CLK on FPU parts and warning about the SD card write protect pin being
connected to the peripheral reset in newer tower card versions.
V0.18 27.10.2012 Added additional DAC details.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 18/52 27.10.2012

Appendix A – Developer’s Notes

These developer’s notes were created during porting of the µTasker project and peripheral
drivers to the Kinetis. They are not intended as replacement for the Kinetis K60 user’s
manual but instead discuss details that may not necessarily be immediately obvious and also
compare the features, operation and techniques required to those of the Coldfire project (a
number of peripherals have been inherited from the Coldfire, sometimes with new
enhancements).

The K60 devices contain the following amount of RAM and program FLASH:

MK60N256VLQ100 64k 256k

MK60X256VLQ100 64k 256k

MK60N512VLQ100 128k 512k

MK60N256VMD100 64k 256k

MK60X256VMD100 64k 256k

MK60N512VMD100 128k 512k

MK60N256VLL100 64k 256k

MK60X256VLL100 64k 256k

MK60N512VLL100 128k 512k

MK60N256VML100 64k 256k

MK60X256VML100 64k 256k

MK60N512VML100 128k 512k

The K60X versions contain in addition 256k FlexNVM and 4k FlexRAM.

Program FLASH is located from the address 0x00000000 where the reset vector is located –
the first long word contains the initial stack pointer value and the second long word the initial
program counter value. This is in keeping with the Cortex M4 reset mechanism, which is also
the same as used by the Freescale Cortex devices.

The SRAM is centred around 0x20000000. A device with 128k SRAM will therefore have its
SRAM from 0x1fff0000 to 0x20000ffff – a device with 64k SRAM 0x1ffff8000..0x20007fff.

Security options are loaded from FLASH on reset. These are held in the area
0x00000400..0x0000040f which means that the correct values need to be stored in this area
so that the device is not disabled for debugging, etc. When no security features are to be
activated these addresses are programmed to 0x00.

By default the first 1024 bytes of FLASH are used by the reset vector and interrupt vectors.
In the case of the µTasker project only the reset vectors are located here and the interrupt
vectors are relocated to the start of SRAM – in the case of the K60, 432 bytes of RAM are
actually used, after which variables can be stored.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 19/52 27.10.2012

Between the reset vector and the security settings in FLASH there is 1016 bytes of space.
Standard functions are forced into this space so that it is generally used efficiently if the
compiler doesn’t automatically fill it with code.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 20/52 27.10.2012

Clocks – devices up to 100MHz

The module is very flexible and allows various sources to be used to generate a wide range
of frequencies for use by the CPU and peripherals.

When the device resets it is clocked by default an internal slow clock which has a frequency
of about 32kHz (31.25kHz .. 39.0625 kHz). This is used to derive a frequency 640 times
higher by using a FLL (frequency locked loop), meaning that the CPU clock frequency is in
the range 20-25MHz.

[The Flash configuration parameters allow also a 1kHz slow clock default to save power
when starting in very low power systems].

Due to the fact that the µTasker project is used mainly for communication based projects
where the clock frequencies need to be within certain tolerances (USB, UART, Ethernet) the
initial clocking mode will generally not be suitable since its frequency accuracy is low.
Therefore the concentration is on switching from the initial mode to a mode allowing Ethernet
to operate with the CPU clocked at its maximum speed for this device of 100MHz. This is
accomplished by moving through various intermediate clocking state to arrive at the final
state with all circuitry locked ready for final operation.

Note that the clock source much be 50MHz for the Ethernet controller to be able to operate in
RMII mode since the clock input is used as clock for this Ethernet module.

The following mode transitions (as defined by the multi-purpose clock generator module) are
thus required:

FEI -> FBE -> PBE -> PEE

FEI (FLL Engaged Internal) is the initial state as described above

FBE (FLL Bypassed External) is an intermediate state where the FLL output (initially
between 20MHz and 25MHz) is disconnected and the CPU is driven from the external
reference clock. This enables the FLL to be configured to generate different frequencies
without causing CPU clocking errors to occur. The CPU will in this case be clocked at 50MHz
while the next setting is prepared.

PBE (PLL Bypassed External) is an intermediate state where the CPU is clocked from the
external reference clock (50MHz in the case of the demonstration). The PLL is now enabled
but its output not used, allowing it to be configured ready for the final step.

PEE (PLL Engaged External) is the final state whereby its stabilised output (set to 100MHz)
is used to clock the CPU. It is locked to twice the frequency of the external clock (50MHz).
The FLL is disabled in a low-power state.

The clocking configuration is set in app_hw_kinetis.h by specifying the external clock

frequency and the PLL divide and multiplication values.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 21/52 27.10.2012

#define EXTERNAL_CLOCK 50000000

// this must be 50MHz in order to use Ethernet in RMII mode

#define CLOCK_DIV 16

// input must be divided to 2MHz..4MHz range (/1 to /25 possible)

#define CLOCK_MUL 32

// the PLL multiplication factor to achieve operating frequency of

100MHz (x24 to x55 possible)

From the clock generator output the following main clock signals can be controlled by
dividing by 1 to 16 times. This is also necessary in some cases to respect the maximum
clocking speed of the individual buses/modules:

• System/Core clock – this can be programmed with a divide value of 1 to obtain the
fastest value from a 100MHz PLL output of 100MHz.

• Bus/Peripheral clock – the maximum speed of the peripheral bus is 50MHz and so
this requires a divide value of 2 when the PLL clock is 100MHz.

• FlexBus Clock – The maximum value of the FlexBus clock is 50MHz as in the case of
the bus clock.

• Flash clock – The maximum Flash clock is 25MHz and so a divide by 4 is required in
case of a 100MHz PLL clock output.

The FlexBus and Flash clock speeds should never be higher than the bus clock speed, even
when the bus slock speed is lower than the individual maximum frequencies. The same
applies to the bus clock frequency, which should never be higher than the system/code clock
frequency.

The divide values are set as follows:

#define SYSTEM_CLOCK_DIVIDE 1 // 1 to 16 - usually 1

#define BUS_CLOCK_DIVIDE 2 // 1 to 16

#define FLEX_CLOCK_DIVIDE 2 // 1 to 16

#define FLASH_CLOCK_DIVIDE 4 // 1 to 16

If any settings are invalid (for example an invalid divide value is attempted or a clock range is
out of specification) a compiler check error is generated so that the offending value can be
corrected.

The CPU clock frequency generated by the PLL is displayed when running the simulator.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 22/52 27.10.2012

Clocks – devices above 100MHz

Devices with floating point unit (FPU) operate at 120MHz and above. The design of the clock
module is however different.
The PLL input has a range of 8MHz to 16MHz. The pre-divider can divide the input by 1 to 8
to obtain a suitable frequency value.
The PLL multiplier has the range x16 to x47
The PLL has an additional output which is twice the PLL output speed, meaning that this
output should be set to 240MHz to achieve a system clock of 120MHz. This x2 clock is
optionally available for deriving peripheral frequencies from.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 23/52 27.10.2012

Tower TWR-K40X256 clock

This board uses an 8MHz crystal oscillator, rather than an external clock as the K60 tower
board uses. This means that its clock initialisation is a bit different because it can’t transition
from the FEI to FBE state based on an external clock source but must enable the crystal
oscillator instead.
The configuration for 96MHz is shown below:

#define CRYSTAL_FREQUENCY 8000000 // 8 MHz crystal

#define _EXTERNAL_CLOCK CRYSTAL_FREQUENCY

#define CLOCK_DIV 4

// input must be divided to 2MHz..4MHz range (/1 to /25 possible)

#define CLOCK_MUL 48

// the PLL multiplication factor to achieve operating frequency of

96MHz (x24 to x55 possible)

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 24/52 27.10.2012

GPIOs

General purpose I/Os are grouped as 32 bit ports with read, write, clear, set and toggle
capability. All ports are disabled (not clocked) out of reset and so they need to first be
enabled before they can be used. This involves setting the bit for the particular port in the
System Clock Gating Control Register 5 (SIM_SCGC5 in the System Integration Module).

GPIOs are multiplexed with other peripheral signals and can be configured to have specific
characteristics. The usual default is to be not connected (disconnected also from the GPIO
functionality) or to have a default peripheral function. To be used as digital input or output
they must be connected by setting each individual port bit control accordingly to GPIO
function. Each GPIO input can be configured to have no pulls, pull-up or pull-down, with
either a 2MHz passive input filter or a optional digital glitch filter. Each GPIO output can be
configured to be push-pull or open-drain, with full-speed or limited slew rate, with full drive or
limited drive strength.

By setting a lock bit the port pin configuration can be protected against further modification
until the next system reset.

To cater for the need to control each individual pin the µTasker port macro has been
extended to automatically clock the port and include passing the characteristics of the pins
when they are configured. The following shows a single GPIO being configured as an output
with the initial value ‘1’ as open-drain output with limited slew rate and high drive strength.

_CONFIG_DRIVE_PORT_OUTPUT_VALUE(A, PORTA_BIT11, PORTA_BIT11,

(PORT_ODE | PORT_SRE_SLOW | PORT_DSE_HIGH));

When multiple pins are defined each of them are set to have the same configuration
characteristics. The macros that include the full configuration are:

_CONFIG_PORT_OUTPUT(ref, pins, chars)

_CONFIG_PORT_INPUT(ref, pins, chars)

_CONFIG_DRIVE_PORT_OUTPUT_VALUE(ref, pins, value, chars)

The µTasker simulator simulates the port states out of reset so that the default function of
each pin can be simply identified. Unconnected pins are displayed as inputs but are not
actually connected to the GPIO input function. Pins defaulting to a peripheral function are
displayed as ‘P’ and their exact function can be seen by hovering the mouse over the port bit.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 25/52 27.10.2012

Simulator showing the state of pins out of reset (PA.11 has been subseqeunty set as output). Hovering
the mouse over PA.19 shows its possible functions and that its default is XTAL

To configure a peripheral function the macro _CONFIG_PERIPHERAL(port, pin,

function) can be used. For example:

_CONFIG_PERIPHERAL(A, 15, PORT_MUX_ALT4);

This sets the alternative function 4 to port A, bit 15. In this case it is MII0_TXEN on PA.15.

Alternatively the following can also be used when a corresponding peripheral multiplexing
define is available.

 _CONFIG_PERIPHERAL(A, 15, PA_15_MII0_TXEN);

Furthermore the characteristics of digital peripherals can also be controlled at the same time
as their multiplexing is configured:

_CONFIG_PERIPHERAL_VALUE(B, 17, (PORT_MUX_ALT5 | PORT_DSE_HIGH |

PORT_PS_DOWN_ENABLE));

This shows the alternative 5 peripheral (FB_AD16) being set to port B-17 with high strength

and pull-down enabled

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 26/52 27.10.2012

It is important to note that the ports need to be powered up to enable setting
peripheral functions on them. For this reason the peripheral select macros
automatically power on the ports of the peripheral pins selected.

See the following forum post for a fast port configuration macro added to the project
http://www.utasker.com/forum/index.php?topic=1664.0

UARTS

The K60 has 6 UARTs with RXD, TXD, RTS and CTS signals.

The UARTs support infrared and ISO 7816 T0/T1 protocols.

UARTs 0 and 1 are clocked from the core/system clock, which allows highest performance
potential. The other UARTs are clocked from the bus clock.

The UARTs can usually be mapped to various pins on the device. The following table shows
the possibilities.

UART0 UART0_TXD UART0_RXD UART0_RTS UART0_CTS

UART0_A_LOW Port A2 (Alt 2) Port A1 (Alt 2) Port A3 (Alt 2) Port A0 (Alt 2)

default Port A14 (Alt 3) Port A15 (Alt 3) Port A17 (Alt 3) Port A16 (Alt 3)

UART0_ON_B Port B17 (Alt 3) Port B16 (Alt 3) Port B2 (Alt 3) Port B3 (Alt 3)

UART0_ON_D *Port D7 (Alt 3) Port D6 (Alt 3) Port D4 (Alt 3) Port D5 (Alt 3)

UART1 UART1_TXD UART1_RXD UART1_RTS UART1_CTS

default Port E0 (Alt 3) Port E1 (Alt 3) Port E3 (Alt 3) Port E2 (Alt 3)

UART1_ON_C Port C4 (Alt 3) Port C3 (Alt 3) Port C1 (Alt 3) Port C2 (Alt 3)

UART2 UART2_TXD UART2_RXD UART2_RTS UART2_CTS

Default Port D3 (Alt 3) Port D2 (Alt 3) Port D0 (Alt 3) Port D1 (Alt 3)

K70 –

UART2_ON_E
Port E16 (Alt 3) Port E17 (Alt 3) Port E19 (Alt 3) Port E18 (Alt 3)

K70 –

UART2_ON_F
Port F14 (Alt 4) Port F13 (Alt 4) Port F11 (Alt 4) Port F12 (Alt 4)

UART3 UART3_TXD UART3_RXD UART3_RTS UART3_CTS

default Port E4 (Alt 3) Port E5 (Alt 3) Port E7 (Alt 3) Port E6 (Alt 3)

UART3_ON_B Port B11 (Alt 3) Port B10 (Alt 3) Port B8 (Alt 3) Port B9 (Alt 3)

UART3_ON_C Port C17 (Alt 3) Port C16 (Alt 3) Port C18 (Alt 3) Port C19 (Alt 3)

K70 –

UART3_ON_F
Port F8 (Alt 4) Port F7 (Alt 4) Port F9 (Alt 4) Port F10 (Alt 4)

UART4 UART4_TXD UART4_RXD UART4_RTS UART4_CTS

default Port E24 (Alt 3) Port E25 (Alt 3) Port E27 (Alt 3) Port E26 (Alt 3)

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 27/52 27.10.2012

UART4_ON_C Port C15 (Alt 3) Port C14 (Alt 3) Port C12 (Alt 3) Port C13 (Alt 3)

UART5 UART5_TXD UART5_RXD UART5_RTS UART5_CTS

default Port E8 (Alt 3) Port E9 (Alt 3) Port E11 (Alt 3) Port E10 (Alt 3)

UART5_ON_D Port D9 (Alt 3) Port D8 (Alt 3) Port D10 (Alt 3) Port D11 (Alt 3)

*UART0_TXD on Port D7 is special since its drive strength can be programmed by
CMTUARTPAD in SIM_SOPTS.

The µTasker UART driver supports 6 channels and defaults to the pin-outs as shown in the
“default” rows. By activating the alternative defines, for UARTs with multiple positions, the set
of combinations can be configured accordingly.

The UARTs support 10 and 11 bit characters. That means that they can operate in 8 bit
character mode with or without parity but plus one stop bit:

- start bit, 8 bit character, one stop bit)

- start bit, 8 bit character, parity bit, one stop bit)

or 7 bit character mode with parity

- start bit, 7 bit character, parity bit, one stop bit)

In addition an address bit can be used (generally known as multi-drop or 9 bit mode).

When in 7 bit character mode the parity bit is received as 8th bit in the receive data register
and so needs to be masked out in software to avoid corruption.

This means that there are some restrictions as to what formats are possible since 1.5 or 2
stop bits cannot be configured and also 7 bit character mode without parity is not supported.

RTS/CTS operation

The UARTs support various modem modes of operation. The two most important are the
control of RTS when sending on a bidirectional line (like RS485), whereby the RTS should
drive the transmitter transceiver (either positive or negative), and HW flow control, whereby
the RTS and CTS are used to control the flow of data between the two ends [transmitter can
only send when CTS is asserted].

To control the RTS line to envelope the data transmission characters a mode is available. By
enabling the bit TXRTSE in the UARTx_MODEM the UART automatically asserts the RTS line

when there is data in the output buffers and negates it automatically after the stop-bit of the
last data byte has been sent. In addition the polarity of the RTS line can be controlled using
the TXRTSPOL bit in the same register.

The RS485 mode can be controlled by the driver routine:

fnDriver(SerialHandle, (CONFIG_RTS_PIN | SET_RS485_MODE |

SET_RS485_NEG), 0);

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 28/52 27.10.2012

When not in RS485 mode the RTS signal can be controlled by software by using

fnDriver(SerialHandle, (SET_RTS), 0);

and

fnDriver(SerialHandle, (CLEAR_RTS), 0);

In this case the RTS line must have been configured as non-RS485. The UART negates the
RTS line when CLEAR_RTS is commanded by disabling its control based on the state of the
receiver FIFO. When SET_RTS is commanded the UARTs automatic RTS mode is selected
which then controls the state of the RTS line based on its FIFO. If the FIFO becomes
critically full it will automatically negate the signal but will otherwise assert it. This means that
the UART will automatically protect its own FIFO from overruns as long as HW flow control is
supported by the remote transmitter.

The µTasker serial driver will also automatically control the RTS line when the input buffer
becomes critically full.

To perform HW flow control in the opposite direction, the CTS line can be configured to
automatically control the transmitter. This mode is automatically configured when the HW
flow control mode is configured [tInterfaceParameters.Config |= RTS_CTS].

The bit TXCTSE set in UARTx_MODEM is set so that the UART automatically suspends

transmission when the input is negated. No CTS interrupt is generated so the control is
purely performed in hardware. The state of the CTS line cannot be specifically requested.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 29/52 27.10.2012

UART DMA transmission is supported when the define SERIAL_SUPPORT_DMA is enabled

in the project. In this case each individual UART can be configured for either DMA or
interrupt operation when the UART is configured:

 tInterfaceParameters.ucDMAConfig = UART_TX_DMA; // use DMA for transmission

 on the UART

 SerialPortID = fnOpen(TYPE_TTY, FOR_I_O, &tInterfaceParameters);

 // configure and open UART interface

DMA channels triggered by peripherals use the DMA MUX. When peripheral DMA is in
operation the DMA MUX is automatically enabled and configured to suit the peripheral. The
DMA channel used by each peripheral is configurable in app_hw_kinetis.h in the DMA

settings block, whereby the channels must be unique for all used ones.

#define DMA_UART0_TX_CHANNEL 3 // use this DMA channel when using UART 0

 for transmission driven by DMA

#define DMA_UART1_TX_CHANNEL 4 // use this DMA channel when using UART 1

 for transmission driven by DMA

#define DMA_UART2_TX_CHANNEL 5 // use this DMA channel when using UART 2

 for transmission driven by DMA

#define DMA_UART3_TX_CHANNEL 6 // use this DMA channel when using UART 3

 for transmission driven by DMA

#define DMA_UART4_TX_CHANNEL 7 // use this DMA channel when using UART 4

 for transmission driven by DMA

#define DMA_UART5_TX_CHANNEL 8 // use this DMA channel when using UART 5

 for transmission driven by DMA

The priority of the channel used is set to the the same level as the channel’s number (eg. if
DMA channel 4 is used for a particular UART transmitter its DMA priority is also 4).

If it is necessary to change priorities of the channels this should be performed by using a set
of channel priority definitions which will be set at initialisation:

#define DMA_CHANNEL_0_PRIORITY 15

#define DMA_CHANNEL_1_PRIORITY 14

#define DMA_CHANNEL_2_PRIORITY 13

..

#define DMA_CHANNEL_14_PRIORITY 1

#define DMA_CHANNEL_15_PRIORITY 0

Changing priorities after initialisation is not supported due to the risks involved but swapping
channels used (and so priority settings) is possible at run-time. It is to be noted that any DMA
operation that occurs when priority levels are being changed and there is a conflict (two
channels with same priority level) this will lead to an error and suspend the DMA attempt.
Since it is generally not realistic to change priorities safely without disabling all DMA
operation temporarily (and possibly losing some peripheral data) this is avoided.

Reception via DMA is less common due to the fact that there is no indication of individual
characters being receive d(without polling) but can be enabled using

tInterfaceParameters.ucDMAConfig |= UART_RX_DMA; // use DMA for reception

 on the UART

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 30/52 27.10.2012

Each complete buffer received results in a message with its character content to be informed
of. Half-buffers are used if the flag UART_RX_DMA_HALF_BUFFER is set as well when the

interface is opened/configured.

Again each UART channel used needs to be defined to a particular DMA channel

#define DMA_UART0_RX_CHANNEL 9 // use this DMA channel when using UART 0

 for reception driven by DMA

#define DMA_UART1_RX_CHANNEL 10 // use this DMA channel when using UART 1

 for reception driven by DMA

#define DMA_UART2_RX_CHANNEL 11 // use this DMA channel when using UART 2

 for reception driven by DMA

#define DMA_UART3_RX_CHANNEL 12 // use this DMA channel when using UART 3

 for reception driven by DMA

#define DMA_UART4_RX_CHANNEL 13 // use this DMA channel when using UART 4

 for reception driven by DMA

#define DMA_UART5_RX_CHANNEL 14 // use this DMA channel when using UART 5

 for reception driven by DMA

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 31/52 27.10.2012

Ethernet Controller

Warning: due to a conflict in the sharing of the MII0_RXER and JTAG_TRST lines
MII0_RXER (optional line) cannot be used together with a JTAG debugger. This is not
a problem when debugging using the SWD interface, such as the inbuilt debugger on
the tower kit. When using JTAG the MII0_RXER function should not be used and can
be disabled by setting the define JTAG_DEBUG_IN_USE_ERRATA_2541.

The Ethernet controller is basically compatible with the one in the Coldfire. It has the same
control register set and MIB counters.

In addition it has IEEE1588 support and a capture/compare block.

The tower kit supports RMII mode of operation at the TWR-SER board and the K60 board is
defined for operation in this configuration. This means that the following signals are required
for Ethernet operation (see also the discussion about the clock setting in the main text in the
section about recommended jumper configurations):

- MII_MDIO (PB0 – ALT 4) maintenance connection to PHY – serial data line

- MII_MDC (PB1 – ALT 4) maintenance connection to PHY – serial clock

- RMII_CRS_DV (PA14 ALT 4)

- RMII_RXD[0] (PA13 ALT 4)

- RMII_RXD[1] (PA12 ALT 4)

- RMII_RXER (PA5 ALT 4)

- RMII_TXD[0] (PA16 ALT 4)

- RMII_TXD[1] (PA17 ALT 4)

- RMII_TXEN (PA15 ALT 4)

- RMII_REF_CLK – this is taken from the internal clock OSCERCLK, which is a
buffered signal from the EXTAL input (oscillator or crystal). This signal must be
50MHz for the RMII Ethernet mode to operate.
The signal is also available as dedicated input on some device, such as the FPU
parts, which means that the main oscillator is not required to be 50MHz.

The define ETHERNET_RMII should be used.

The following differences exist in comparison to the M52259 Kirin3 (as reference)

1) It is not possible to write to the MIB block. When writes are attempted a hard fault
occurs (to clear the MIB a memcpy() call is made with the Kirin3). The MIBC register
contains a new bit called MIB_CLEAR which can be used to command a clear
instead.

2) K60 can operate in RMII mode at 100MHz.

3) The CRC32 can be automatically stripped when receiving Ethernet frames.

4) The Ethernet buffer descriptors operate in big-endian mode. This means that their
content flag format is byte-swapped in comparison to when operating on a Coldfire. In
addition the content length (saved as short word in the descriptors) needs to be
converted as do any memory pointers in the descriptors.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 32/52 27.10.2012

5) The Ethernet buffer descriptors operate in legacy mode by default, meaning that
Coldfire code (with the exception of little-endian conversions) operates without any
large modifications. The buffer descriptors can also work in extended mode – this
mode has not yet been implemented.

6) The Kinetis EMAC automatically pads transmitted frames to 64 byte length

An interesting feature in the EMAC is the new support for IP checksum offloading. This
allows the HW to automatically check or generate checksums for IP, ICMP, TCP and UDP
frames (IPv4 and IPv6), which make the operation much more efficient than when SW needs
to do this – see the following for some figures showing the loading of check sum calculation:
http://www.utasker.com/docs/uTasker/uTaskerBenchmarks.PDF

To enable check sum offloading in transmission IP headers enable
IP_TX_CHECKSUM_OFFLOAD

To enable check sum offloading in transmission IP protocol payloads enable
IP_TX_PAYLOAD_CHECKSUM_OFFLOAD

Enable both to use both transmission offloading features.

To automatically discard frames received with IP header or protocol checksums the defined
IP_RX_CHECKSUM_OFFLOAD is enabled. Since no frames will be received with such errors

the IP software also doesn’t need to verify them.

PHY and RMII

It is to be noted that RMII mode of operation requires more effort to match the Ethernet
controller’s mode to the present line characteristics. Since the PHY is the part actually
monitoring the line and informing of line changes (link up, link down, link characteristic
changes) it is important that the PHY and Ethernet work together. Essentially all link state
changes are reported via its interrupt line and the Ethernet driver can change the Ethernet
controllers mode settings accordingly. This is performed in the Ethernet driver to ensure that
the RMII mode of the Ethernet controller (10M or 100M, half-duplex or full-duplex) is each
time synchronised to that which is being detected by the PHY. The Freescale tower kit
operates in RMII mode although the Kinetis itself can be connected in MII mode, whereby the
adaptation is then controlled automatically by the interface itself.

Communication between the PHY and the Kinetis takes place via the MII management
channel. The serial speed is usually 2.5MHz but it is run at 800kHz in the tower kit since the
lines are long (they traverse the backplane) and the weak pull-up on the data line, together
with the backplane capacitance otherwise result in a speed limitiation.

When there is no communication between the PHY and the Kinetis the MII management
channel’s clock is stopped wherever possible to reduce interference and save (a small
amount of) power.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 33/52 27.10.2012

FLASH

The X parts contain FlexNVM and FlexRAM. The N parts contain just program FLASH which
can however also be programmed by the application. Since the most common parts are the
N parts these will be concentrated on here.

The FLASH controller allows simple programming and erasing of FLASH. Flash
programming can be performed on long words (cumulative programming of single long words
is expressly forbidden and so is to be avoided) and larger buffer sizes too.

FLASH can be erased in sectors (2k in size for non-FPU types and 4k for FPU types) or in
blocks (256k in 512k parts). The FLASH granularity is thus 2k resp. 4k (smallest erasable
block).

Programming of a long word takes typically 50us. Erasing a sector takes typically 20ms
(maximum 100ms). A block erase takes typically 160ms (maximum 800ms).

Long word programming is however only possible on non-FPU parts because the FPU parts
use “phrase” programming instead (based on 8 bytes)

The program FLASH is divided into two banks (blocks) and it is possible to erase/program in
one bank when code is being executed from the other. It is not possible to execute code from
a bank in which a write or erase operation is being performed and so generally the
programming routine runs from RAM and interrupts need to be avoided if their handlers can
cause code in the programming area to be called.

The mass erase command fnMassEraseFlash() is supported by using the “ERASE ALL

BLOCKS COMMAND”. This deletes all types of internal memory and also removes any block
protection security and so can be used to unlock general security settings.

Reset and Watchdog

The mode controller can be read to determine the reason of the last reset. Reasons range
from power on reset, external reset, wakeup reset, watchdog reset to loss-of-clock reset.

The routine extern unsigned char fnAddResetCause(CHAR *ptrBuffer) can be

used to fill a string buffer with the reset cause and is displayed on the administrator web
page when the web server demo is active.

The internal watchdog operates out of reset and is clocked by default from the external
system clock and it must be either reconfigured or stopped within a short period of time of
256 bus clock cycles after reset. It is therefore necessary to perform this activity before the
initialisation code performs variable initialisation to avoid a watchdog reset taking place.

The watchdog is set to a value of 2s by default in the µTasker demo project and can be
disabled by holding SW1 on the TWR-K60N512 board. It is triggered every 200ms by the
watchdog task when the system is operating normally. When triggering the watchdog
interrupts are temporarily disabled so that the trigger sequence, that much be completed
within 20 bus cycles, is not disturbed. The trigger sequence involves writing the sequence
0xa602 and 0xb480 to the refresh register.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 34/52 27.10.2012

The Kinetis includes a further watchdog module called the external watchdog monitor which
is designed to reset external circuitry in case of a software error. It doesn’t reset internal
circuitry since this is the job of the internal watchdog.

The user can command a reset of the board by using the routine extern void

fnResetBoard(void). This uses the Cortex’s reset request to initiate the reset the fact is

signalled in the mode controller’s reset cause register after the next reset.

Important notes about debugging: Due to the fact that the watchdog configuration needs to
be performed quickly after a reset it is recommended to allow the debugger to run to main()
when it connects. This allows it to immediately start the processor and allow the code to
quickly configure the watchdog as required – even with active watchdog configured it can be
set up to stop when the debugger pauses execution (this is the default configuration in the
project).

If the start-up code needs to be stepped through, the watchdog unlocking sequence should
be avoided since it will result in a reset due to the fact that the stepping has taken too long to
reach the unlocking location. See also the following forum post for details of speeding up the
code to reach the watchdog unlocking sequence:
http://www.utasker.com/forum/index.php?topic=1664.0

Interrupts

The size of the interrupt vector table depends on the number of interrupts that are possible –
the K60 requires 432 bytes to hold its maximum total 216 interrupt vectors. If interrupt
vectors located higher in the vector table are not actually used less space would in fact be
needed, but the 432 bytes space is reserved to accommodate all possibilities.

Rather than use the interrupt vectors directly from fixed locations at the start of FLASH they
are entered into SRAM only when needed. The first 432 bytes of SRAM are reserved for this
use, meaning that linker script files allow the first used address to be 0x1fff01b0. The

Cortex M4 vector table offset register is set to 0x1fff0000 so that interrupt vectors are

taken from there.

This strategy allows interrupt handlers to be exchanged in SRAM during operation and also
is suited to systems operating with a boot loader since its interrupt vectors cannot be fixed at
the start of FLASH, which is occupied by the boot start-up code.

It is to be noted that not all Kinetis parts have compatible interrupt vector tables. For
example, low power parts that are specified for 50MHz have less interrupts and a
correspondingly smaller table with interrupt vector IDs at different location to its 75MHz or
100MHz parts.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 35/52 27.10.2012

Port Interrupts

Each GPIO can be used as an interrupt line (the Kinetis doesn’t have IRQ0, IRQ1, IRQ2…
as the Coldfire has).

The port interrupt support is enabled by the define SUPPORT_PORT_INTERRUPTS (in

app_hw_kinetis.h). This allows individual interrupt handler routines to be defined to each

of the port pins, whereby the Kinetis has one interrupt vector for each of the ports available
(port A to port E). If any ports are not required for interrupt generation they can be specifically
excluded from the code by setting NO_PORT_INTERRUPTS_PORTA,

NO_PORT_INTERRUPTS_PORTB, etc. as appropriate.

The following shows how a port interrupt can be simply defined:

INTERRUPT_SETUP interrupt_setup;

interrupt_setup.int_type = PORT_INTERRUPT; // identifier to configure port interrupt

interrupt_setup.int_handler = fnInterruptHandler; // handling function

interrupt_setup.int_priority = PRIORITY_PORT_INT; // interrupt priority level

interrupt_setup.int_port = PORTA; // the port that the interrupt input is on

interrupt_setup.int_port_bits = PORTA_BIT27; // the IRQ input connected

interrupt_setup.int_port_sense = (IRQ_LOW_LEVEL | PULLUP_ON);

 // interrupt is to be low level sensitive

fnConfigureInterrupt((void *)&interrupt_setup); // configure interrupt

This shows a level sensitive interrupt being configured on port A, bit 27. Also a pull-up
resistor is being configured in the port input.

The interrupts are flexible and can be falling edge, rising edge or both-edge sensitive. They
can also be level high or level low sensitive. The type can be selected by defining
IRQ_FALLING_EDGE, IRQ_RISING_EDGE, IRQ_BOTH_EDGES, IRQ_LOW_LEVEL or

IRQ_HIGH_LEVEL as interrupt_setup.int_port_sense value.

An interrupt can be set to multiple port pins by defining more than one input belonging to the
port as interrupt_setup.int_port_bits value. For example,
interrupt_setup.int_port_bits = (PORTA_BIT27 | PORTA_BIT18 |

PORTA_BIT10); will cause the same handler to be called for matching states or changes

on any of these pins.

Since the port interrupt interface handles clearing of the interrupt source the user handler
doesn’t need to be concerned with these details.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 36/52 27.10.2012

Periodic Interrupt Timers (PIT)

The K70 has 4 PITs. These are however not the same as the ones in the Coldfire.

Improved features include 32 bit counters that can also trigger DMA transfers or ADC
conversions. Each of the PITs is realised as a down counter which are clocked from the
peripheral bus clock.

The following example shows how a PIT (Pit 1 shown) can be simply configured for a single
shot interrupt:

 PIT_SETUP pit_setup; // interrupt configuration parameters

 pit_setup.int_type = PIT_INTERRUPT;

 pit_setup.int_handler = test_timer_int; // test a single shot timer

 pit_setup.int_priority = PIT1_INTERRUPT_PRIORITY;

 pit_setup.count_delay = PIT_US_DELAY(3245); // 3245us delay

 pit_setup.mode = PIT_SINGLE_SHOT; // one-shot interrupt

 pit_setup.ucPIT = 1; // use PIT1

 fnConfigureInterrupt((void *)&pit_setup); // enter interrupt for PIT1 test

When the timer has fired it will be automatically stopped. If there are no other PITs active the
PIT module will also be automatically powered down.

To start a periodic interrupt the mode PIT_PERIODIC is used instead. In this case it will run

until stopped with the mode command PIT_STOP. Again, if there are no other PITs operating

when the PIT is stopped the module will be automatically powered down.

Since the PITs have 32 bit counters and are clocked at the bus rate, with maximum speed of
50MHz, the maximum period that they can be set to at the highest bus speed is about 85s.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 37/52 27.10.2012

FlexBus

The FlexBus has 6 independent chip selects and is thus almost identical to the FlexBus in
the M520X Coldfires (also the Kirin3 M5225X, which however has only two independent chip
select lines).

It has one additional register called the Chip Select Port Multiplexing Control Register which
controls the multiplexing of some of the available signals, depending on the bus interface
type required.

The FlexBus is intended mainly for multiplexed bus operation whereby the data and address
bus widths are part dependent. The FlexBus memory range is between 0x60000000 and
0cdfffffff.

The K60 supports FB_AD0..FB_AD31 (a full 32 bit multiplexed bus) and FB_A16..FB_A29 as
non-multiplexed address bus. The bus lines used are selected by the port peripheral
functions alone.

The TWR-K60N512 can control the TFT display on the TWR-LCD extension module via a 16
bit multiplexed bus, whereby the lines FB_AD0..FB_AD15 are used as data bus (note that
the 16 bit accesses can be controlled to occur on either FB_AD0..FB_AD15 or
FB_AD16..FB_AD31; in comparison the Mini-FlexBus in the Kirin3 has only
FB_AD..FB_AD15.

The line FB_AD16 is used as an address line to select between command and data access
and the control lines FB_CS0 and FB_RW are the only other signals required for complete
control.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 38/52 27.10.2012

DMA Controller

The K60 has a 16 channel extended DMA controller.

When the define DMA_MEMCPY_SET is enabled the uMemcpy() and uMemset() routines

use a single channel of the eDMA controller to perform the memory transfers. This is several
times faster than performing the copy via the CPU. The channel is given the lowest priority
and is allowed to be temporarily stalled by higher priority DMA channels while operating.
Should an IRQ perform a copy based on these functions any active copy is protected and the
IRQ will then use a conventional copy instead.

The DMA channel used for the memory copy routines is defined by

#define DMA_MEMCPY_CHANNEL 15

The priority of the used channel is set to 0 (lowest) and the priority of the used channel
(when not 0) is set to channel 0 so that no two channels have the same priority, which is
otherwise illegal.

It is to be noted that only the first 4 DMA channels support periodic transfers and so must be
used together with PITs if used in this mode.

All devices have DMA channels 0..15. The devices with FPU have a second DMA group with
channels 16..31. Since the groups’ DMA channels are prioritised between 0 and 15 (15 is
highest priority) and no two channels may have the same priority also the groups have their
own priorities that much ne unique. The group 0 (DMA channels 0..15) are set to group
priority 0 and the group 1 (DMA channels 16..31) are set to group priority 1 in the µTasker
project to ensure that they don’t collide. This means that the user can assign DMA channels
from group 1 (when using devices with this) if they should have higher priorities than those in
group 0.

RTC

The K60 has a low power Real Time Clock module with an independent power supply
(VBAT), a 32.768kHz oscillator and optional 1Hz square wave output. The 32.768kHz clock
output can also be supplied to the rest of the chip if required. The crystal can be calibrated
between 0.12 ppm and 3906 ppm.

The RTC is not a RTC which counts second, minutes, hours, days, etc. but is a 32 bit
seconds counter. This means that conversion to actual time/dates needs to be handled in
software, as are such details about the number of days in a months and when a leap-year
has to be considered.

Furthermore the power to the RTC is always taken from the VBAT input, also when the
processor is powered up. This means that there is battery drain even when the processor is
powered if this is not solved by external hardware and the RTC cannot be used without
VBAT, even if it doesn’t need to operate when normal power has been removed (of course
this is not a problem since VBAT can also be simply connected to the general power supply
in such a usage case).

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 39/52 27.10.2012

The VBAT voltage level should be between 1.71V and 3.6V. The typical current consumption
with active 32.768 kHz oscillator operating is 550nA, which is a good value for an internal
RTC. However there are no additional user-registers that can be retail values in the module,
which are often available in RTC modules.

Software should not try to access the RTC operating registers when the VBAT is not
connected since this will result in a bus error.

There are 4 pins that can be assigned to the RTC.

EXTAL32, XTAL32 - for 32.768kHz crystal connection

RTC_CLKOUT - for 1Hz square wave output

RTC_WAKEUP – open-drain, active low output to wake up external devices when the RTC
interrupt occurs. This asserts when the device is powered down and can thus be used to
start a system out of this mode at a pre-defined point in time This output is not available on
all device types.

The RTC interrupt can be used to wake the chip from any low power mode.

The K40 doesn’t seem to implement the seconds interrupt in the RTC. A seconds interrupt
can however be achieved by using an alarm interrupt always set to the next second.

Note that the RTC crystal should be positioned close to the device and its signals
should be short and protected against cross-talk from other signal lines. The start-up
time is typically 1s and this time should be waited after initial activation before using
the RTC or its clock at other modules.

The µTasker project implements a RTC API including Gregorian date/time from the 1s
interrupt. It emulates the RTC in some Coldfire to additionally allow minutes, hours, days,
stop-watch interrupts as well as date/time alarm interrupt.More information is available at
http://www.utasker.com/forum/index.php?topic=1656.0

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 40/52 27.10.2012

ADC

The Analogue to Digital Converter (ADC) module used in the Kinetis devices supports up to
4 differential analogue inputs and up to 24 single-ended analogue inputs. Based on linear
successive approximation it offers up to 16-bit resolution (note that several resolution modes
are possible and the low power ADC achieves up to 14 bit of actual accuracy).

The ADC supports a self-calibration mode.

Using its compare registers it can compare ADC results and also ranges.

The following table shows the pins that are used by the ADCs in the K60 and also
multiplexed with ports:

ADC name Port Function

ADC0_SE10 PTA7 ALT 0
ADC0_SE11 PTA8 ALT 0
ADC1_SE17 PTA17 ALT 0

ADC0_SE8 PTB0 ALT 0
ADC0_SE9 PTB1 ALT 0

ADC0_SE12 PTB2 ALT 0
ADC0_SE13 PTB3 ALT 0

ADC1_SE10 PTB4 ALT 0
ADC1_SE11 PTB5 ALT 0
ADC1_SE12 PTB6 ALT 0

ADC1_SE13 PTB7 ALT 0
ADC1_SE14 PTB10 ALT 0

ADC1_SE15 PTB11 ALT 0
ADC0_SE14 PTC0 ALT 0
ADC0_SE15 PTC1 ALT 0
ADC0_SE4 PTC2 ALT 0
ADC1_SE4b PTC8 ALT 0

ADC1_SE5b PTC9 ALT 0
ADC1_SE6b PTC10 ALT 0

ADC1_SE7b PTC11 ALT 0
ADC0_SE5 PTD1 ALT 0
ADC0_SE6 PTD5 ALT 0

ADC0_SE7 PTD6 ALT 0
ADC1_SE4a PTE0 ALT 0

ADC1_SE5a PTE1 ALT 0
ADC1_SE6a PTE2 ALT 0

ADC1_SE7a PTE3 ALT 0
ADC0_SE17 PTE24 ALT 0
ADC0_SE18 PTE25 ALT 0

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 41/52 27.10.2012

Some ADC inputs have dedicated pins:

ADC0_DP0 / ADC0_DM0

ADC0_DP1 / ADC0_DM1

PGA0_DP / PGA0_DM

ADC0_DP3 / ADC0_DM3

ADC1_DP0 / ADC1_DM0

ADC1_DP1 / ADC1_DM1

PGA1_DP / PGA1_DM

ADC1_DP3 / ADC1_DM3

These are the inputs with differential capabilities and the programmable gain amplifiers.

It is to be noted that the analogue functions are the default functions for the ADC pins.

Conversion time was tested with several setups as reference (K60 running at 100MHz with
bus clock at 50MHz):

ADC clock Bus-clock/2 - Pre-scaler /8 - 16 bit mode single-ended - long-sample (24 clocks) –
32x hardware averaging = 460us

Pre-scaler reduced to /1 = 56us

+ Short-Sample mode = 32.4us

+ Bus not divided by 2 = 16us

+ No hardware averaging = 700ns

In 16 bit mode the ADC clock should however be restricted to the range of 2MHz to 12MHz,
meaning that not all conversion times can be achieved to specification. Practically, the bus
clock needs to be divided by 8 to clock with 6.25MHz, which gives a minimum conversion
time of 5.6us – or theoretical maximum sample rate of 178kHz. If the ADC clock can be
controlled to be exactly 12MHz the minimum conversion time of 2.6us and maximum sample
rate of 383kHz is obtained in 16 bit mode (remembering that this will achieve about 13 bits of
accuracy).

The slowest rate using continuous conversion above is equivalent to 2.17kHz.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 42/52 27.10.2012

ADC conversion can be triggered by software, whereby this can be a single conversion or
continuous conversion mode.

Hardware triggering is also possible although the source is chip-dependent. The K60 allows
the following trigger sources:

- External trigger pin PDBn_EXTRG

- High speed comparators (0, 1 or 2)

- PIT 0, 1, 2 or 3

- FTP0, 1 or 2

- RTC alarm or RTC seconds

- Low power timer

The triggering source is configured in SIM_SOPT7.

ADC conversions can be used to trigger DMA transfers.

The K60 has 2 ADC controllers. These both support up to 24 single ended inputs and 4
differential inputs. However only one of the inputs is possible at a time. The two ADC
controllers thus allow two inputs to be samples at the same time. If a higher number of inpust
are to be sample the sampling must be multiplexed between these inputs under software
control.

DAC

The 12 bit Digital to Analogue Converter (DAC) supports DMA operation. The K60 has two
DACs and their outputs can drive external pins or be connected internally as reference to the
analogue comparator, ADCs or Op-Amp.

The DAC can also be used together with DMA and includes a FIFO especially for this mode
of operation.

The 1.2V VREF_OUT or the VDDA voltage can be used as DAC reference. Some
degradation of ADC performance is to be expected if VREF_OUT is used by both ADC and
DAC at the same time; this is due to the DAC switching. VREF_OUT always need an
external load capacitor connected to it spin.

Each DAC has an external trigger input called ADCxSC1A_COCO. This can be also be
triggered on ADC conversion completion.

It is to be noted that the comparator modules also contain 6-bit internal DACs. This are
internal signals only and are not available on any external pins.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 43/52 27.10.2012

I2C

The K60 has 2 I2C controllers. They are more advanced that the I2C controllers in the
M522XX since they support System Management Bus Specification, version 2, have an
additional programmable glitch input filter, range I2C address support and can also detected
an SCL line which is stuck at ‘0’ for too long.

The I2C controllers can usually be mapped to various pins on the device. The following table
shows the possibilities.

I2C0 I2C0_SDA I2C0_SCL

I2C0_B_LOW Port B1 (Alt 2) Port B0 (Alt 2)

default Port B3 (Alt 2) Port B2 (Alt 2)

I2C0_ON_D Port D9 (Alt 2) Port D8 (Alt 2)

I2C1 I2C1_SDA I2C1_SCL

I2C1_ON_E Port E0 (Alt 6) Port E1 (Alt 6)

default Port C11 (Alt 2) Port C10 (Alt 2)

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 44/52 27.10.2012

SPI

The K60 has 3 SPI interfaces. These are different from the QSPI interface in the Coldfire
devices and can also work in slave mode. They are called DSPI because they can also be
driven by DMA and have optional 4 deep receive and transmit FIFOs.

Each SPI channel can automatically control up to 6 chip-select lines, which can be de-
multiplexed externally to up to 48 lines.

The word length can be between 4 and 16 bits.

The port pin-out possibilities are shown in the following table:

SPI0_SCK SPI0_SOUT SPI0_SIN SPI0_CS0 SPI0_CS1 SPI0_CS2 SPI0_CS3 SPI0_CS4 SPI0_CS5

Port A15
(Alt 2)

Port A16
(Alt 2)

Port A17
(Alt 2)

Port A14
(Alt 2)

Port C3
(Alt 2)

Port C2
(Alt 2)

Port C1
(Alt 2)

Port C0
(Alt 2)

Port B23
(Alt 3)

Port C5
(Alt 2)

Port C6
(Alt 2)

Port C7
(Alt 2)

Port C4
(Alt 2)

Port D4
(Alt 2)

Port D5
(Alt 2)

Port D6
(Alt 2)

Port D1
(Alt 2)

Port D2
(Alt 2)

Port D3
(Alt 2)

Port D0
(Alt 2)

SPI1_SCK SPI1_SOUT SPI1_SIN SPI1_CS0 SPI1_CS1 SPI1_CS2 SPI1_CS3 SPI1_CS4 SPI1_CS5

Port B11
(Alt 2)

Port B16
(Alt 2)

Port E3
(Alt 2)

Port B10
(Alt 2)

Port B9
(Alt 2)

Port E5
(Alt 2)

Port E6
(Alt 2)

Port E2
(Alt 2)

Port E1
(Alt 2)

Port B17
(Alt 2)

Port E4
(Alt 2)

Port E0
(Alt 2)

SPI2_SCK SPI2_SOUT SPI2_SIN SPI2_CS0 SPI2_CS1 SPI2_CS2 SPI2_CS3 SPI2_CS4 SPI2_CS5

Port B21
(Alt 2)

Port B22
(Alt 2)

Port B23
(Alt 2)

Port B20
(Alt 2)

Port D15
(Alt 2)

Port D12
(Alt 2)

Port D13
(Alt 2)

Port D14
(Alt 2)

Port D11
(Alt 2)

The SPI interfaces can be used with or without enabled FIFOs. When the FIFOs are not
enabled the SPI operates in simple double-buffered mode. This mode doesn’t allow absolute
maximum throughput efficiency but is useful when this is not the priority but rather simplicity
and compatibility with other code is of more importance. This mode is used when the SD
card is operated via SPI (rather than utilising the internal SD controller in the Kinetis K60).

It is to be noted that the configuration of the SPI clock requires careful attention to the
parameters than can be set to control the delay between the beginning and end of the frame
and the chip select line assertion/negation – also when the chip select lines are not utilised
these times influence the beginning or end of the frames by controlling the length of the first
or last half bit period, depending on the exact mode of operation. Setting up these delays
based on practical measurements is advisable.

SPI FLASH interface: the automatic CS control is used by the µTasker SPI Flash driver due
to the fact that it can easily be controlled to assert the CS line (with controllable delay) when
the first byte in a stream of data is sent and also negate the CS line automatically (with
controllable delay) after the final byte in the stream has been transmitted.

The general configuration consists of programming two registers to define the operating
mode and the timing:

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 45/52 27.10.2012

SPIX_MCR = (SPI_MCR_MSTR | SPI_MCR_DCONF_SPI | SPI_MCR_CLR_RXF |

SPI_MCR_CLR_TXF | SPI_MCR_PCSIS_CS0 | SPI_MCR_PCSIS_CS1 |

SPI_MCR_PCSIS_CS2 | SPI_MCR_PCSIS_CS3 | SPI_MCR_PCSIS_CS4 |

SPI_MCR_PCSIS_CS5);

Selects master mode with SCK only generated when transmission is active. The Rx and TX
FIFOs are cleared and all CS lines are set to inactive ‘1’.

SPIX_CTAR0 = (SPI_CTAR_DBR | SPI_CTAR_FMSZ_8 | SPI_CTAR_PDT_7 |

SPI_CTAR_BR_2 | SPI_CTAR_CPHA | SPI_CTAR_CPOL); // for 50MHz bus,

25MHz speed and 140ns min de-select time

Double bit rate is selected to achieve the maximum operating speed of 25MHz for 50MHz
bus and 8 bit words defined. The delay after transfer pre-scaler value is chosen so that the
CS line is negated after 140ns delay.

(SPIX can be replaced by the SPI interface [0, 1 or 2] used).

The Rx and Tx FIFOs are 4 deep and it is thus possible to prepare up to 4 bytes at a time for
transmission. The first or following bytes are transmitted using

SPIX_PUSHR = (byte | SPI_PUSHR_CONT | ulChipSelectLine |

SPI_PUSHR_CTAS_CTAR0);

This copies the data byte to be transmitted (eg. The SPI Flash command or data) to the
transmit FIFO. The chip select mode is set to continuous, so that it is not negated between
individual byte transmissions. The chip select to be activated is also defined.

As soon as there is a free place in the transmit FIFOs further bytes of data can be prepared.

When the final data byte is entered to the output FIFO the negation of the chip select line is
also prepared by entering the byte with

SPIX_PUSHR = (byte | SPI_PUSHR_EOQ | ulChipSelectLine |

SPI_PUSHR_CTAS_CTAR0);

SPI_PUSHR_EOQ signals that the FIFO entry is the final byte in the transfer sequence so the

chip select is negated after the data has been sent.

For every byte transmitted one reception byte enters the receive FIFO. It is therefore
important to know how many bytes have been sent before reception data is returned so that
these can be appropriately emptied beforehand.

The following diagrams show typical data transfers, and serve as examples of the operation
of the drivers:

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 46/52 27.10.2012

command
0x9f

w
ri
te

 c
o
m

m
a
n
d

RX

TX 0F
IF

O
 c

o
n
te

n
t

0

1

1

3

TXD

IDRXD

0xff 0xff 0xff

Device IDHi-Z Device ID

234 2 1 0

2 3 4

d
u
m

m
y
 r

e
a

d

3

re
a
d

 I
D

2

re
a
d

 d
e

v
ic

e
 I
D

1

re
a
d

 d
e

v
ic

e
 I
D

0

READ IDENTIFICATION

TCF
TFFF
RFDFS

ta
tu

s
F

la
g
s

re
s
e
t
fl
a
g
s

w
ri
te

 d
u
m

m
y

w
ri
te

 d
u
m

m
y

w
ri
te

 la
s
t
d

u
m

m
y

Chip Select

Read of SPI Flash identification: this is a four byte transfer whereby it is possible to write four
bytes of data (the command followed by three dummy bytes) immediately. The diagram
shows this technique (the actual method used in the drivers may depart from this exact
technique and not keep the transmit FIFO completely full but the principle remains generally
valid) in operation since three bytes are immediately written to the transmit FIFO, followed by
a terminating byte, which configures the negation of the chip select line after its complete
transmission.

Various status flags are shown during the frame transfer. All flags are assumed to be ‘0’
before the transfer begins, which is achieved by actively resetting then in the status register.
It is important to note that the flags are not self-clearing and so the driver needs to manually
reset each once its condition has been handled so that the next flag state change can take
place again.

For simplicity it is in fact possible to use only the receive flag (RFDF) for all control due to the
fact that there is always a reception byte with each transmitted byte. This flag indicates that
there is at least one byte of data in the receive FIFO which can be read.

The diagram shows also the number of data bytes in the transmit and receive FIFOs,
whereby the driver attempts mainly to keep the transmitter FIFO as full as possible and to
read received bytes as quickly as possible. It would be generally possible to always transmit
and receive small chunks of 4 bytes but this may result in short dead-times between the
chunks, which the technique of keeping the transmit buffer ‘fed’ avoids (with possible
exceptions when interrupts can temporarily suspend the process so that the transmit FIFO
completely empties).

Note that the RFDR flag is set once the first reception byte is received (thus actually takes
place about 2 clocks after the byte has been completely transferred on the SPI bus) and so
the driver may already start processing the reception byte at that instance. In the diagram the

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 47/52 27.10.2012

processing of all 4 reception bytes takes place at the end of the frame, but this is mainly to
show the operation of the FIFOs. The first received byte is a dummy byte since the SPI Flash
doesn’t respond during the transmission of the command byte (the line is in fact in the high-
impedance state).

0 1 01 2 3 2 1 2 1 0 10

command
0x03

w
ri
te

 c
o
m

m
a
n
d

RX

TX

F
IF

O
 c

o
n
te

n
t

TXD

Hi-ZRXD

Add 23..16

Hi-ZHi-Z

d
u
m

m
y
 r

e
a
d

READ DATA BYTES

TCF
TFFF
RFDFS

ta
tu

s
F

la
g
s

re
s
e
t
fl
a
g
s

w
ri
te

 A
d
d
 1

w
ri
te

 A
d
d
 2

w
ri
te

 A
d
d
 3

Add 7..0Add 15..8

Hi-Z Data 0 Data 1

0xff0xff

w
ri
te

 d
u
m

m
y

w
ri
te

 la
s
t
d
u
m

m
y

re
s
e
t
fl
a
g

d
u
m

m
y
 r

e
a
d

re
s
e
t
fl
a
g

d
u
m

m
y
 r

e
a
d

re
s
e
t
fl
a
g

d
u
m

m
y
 r

e
a
d

re
s
e
t
fl
a
g

re
a

d
 d

a
ta

 0
re

s
e
t
fl
a
g

re
a

d
 d

a
ta

 1

0 1234 2 1 023 3 2 1

Chip Select

The second diagram shows a typical read case where three address bytes follow the
command. Again the FIFO operation is illustrated. For each data byte to be read (only two
are read in this diagram) the driver sends a dummy byte with value 0xff, which is transmitted
and at the same time clocks in the data from the SPI Flash to the receiver FIFO. In this case
there are also more data bytes in the transfer than the FIFO has space for and the driver
operation, controlled by the RFDF flag, is more visible. In the illustration the first read of the
FIFO takes place quickly after the RFDF flag has been set, after which the flag is manually
cleared. Then there is a longer interval between the flag being set and the data being
extracted – this is for illustration purposes since the FIFO operation allows the transmitter
and receiver to continue operation as long as the transmit FIFO has been adequately “fed”
and there is less impact from processor delays up the a point when the transmit FIFO is
completely sent.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 48/52 27.10.2012

SDHC

The K60 has a powerful SDHC (Secured Digital Host Controller). This is of use when working
with SD cards to improve transfer efficiency.

The following signals are involved for interfacing with SD cards:

SDHC_DCLK PTE2 Output Clock signal

SDHC_CMD PTE3 I/O Sends
commands and
receives
responses

SDHC_D0 PTE1 I/O DAT0

SDHC_D1 PTE0 I/O DAT1

SDHC_D2 PTE5 I/O DAT2

SDHC_D3 PTE4 I/O DAT3

CARD DETECT PTE28

WRITE
PROTECT

PTE27

In order for the controller driver interface to be compatible with the µTasker utFAT module it
needs to support the following hardware specific routines:

extern void fnInitSDCardInterface(void);

extern int fnSendSD_command(const unsigned char ucCommand[6],

unsigned char *ucResult, unsigned char *ptrReturnData);

extern int fnGetSector(unsigned char *ptrBuf);

extern int fnReadPartialSector(unsigned char *ptrBuf, unsigned

short usStart, unsigned short usStop);

extern int fnPutSector(unsigned char *ptrBuf);

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 49/52 27.10.2012

FlexCAN

The Kinetis K60 has two FlexCAN channels which are very similar to the single FlexCAN
controller in the M52235 and other Coldfire devices. The pin-out of the CAN_TX and
CAN_RX lines are shown in the following table:

Channel CAN_TX CAN_RX

0 - default PTA12 – Alt 2 PTA13 – Alt 2

0 – define CAN0_ON_PB PTB18 – Alt 2 PTB19 – Alt 2

1 - default PTC17 – Alt 2 PTC16 – Alt 2

0 – define CAN1_ON_PE PTE14 – Alt 2 PTE25 – Alt 2

The µTasker CAN driver supports both of the channels as does the µTasker simulator, which
can work with the KOMODO CAN DUO for connection of the simulator to up to two CAN
buses and also monitor their operation at the same time. See the video:
http://www.youtube.com/watch?v=Ha8cv_XEvco

User’s guide: http://www.utasker.com/docs/uTasker/uTaskerCAN.PDF

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 50/52 27.10.2012

FlexTimer (PWM)

The Kinetis has up to 4 FlexTimers, which are each based on their own 16 bit counters. Each
FlexTimer has up to 8 channels, which all have their own port for input capture or output
compare. They can be used to generate either edge-aligned or centre-aligned PWM outputs.

Not all FlexTimer and channels are available in all devices. For example, the K60 has
FlexTimers 0, 1 and 2, whereby FlexTimer 0 has all 8 channels available and FlexTimers 1
and 2 have only channels 0 and 1 available.

Channel FTM0

0 – default
0 – FTM0_0_ON_C

PTA3 – Alt 3
PTC1 – Alt 4

1 – default
1 – FTM0_1_ON_C

PTA4 – Alt 3
PTC2 – Alt 4

2 – default
2 – FTM0_2_ON_C

PTA5 – Alt 3
PTC3 – Alt 4

3 – default
3 – FTM0_3_ON_C

PTA6 – Alt 3
PTC4 – Alt 4

4 – default
4 – FTM0_4_ON_D

PTA7 – Alt 3
PTD4 – Alt 4

5 – default
5 – FTM0_5_ON_D

PTA0 – Alt 3
PTD5 – Alt 4

6 – default
6 – FTM0_6_ON_D

PTA1 – Alt 3
PTD6 – Alt 4

7 – default
7 – FTM0_7_ON_D

PTA2 – Alt 3
PTD7 – Alt 4

Channel FTM1

0 – default
0 – FTM1_0_ALT_A
0 – FTM1_0_ON_B

PTA8 – Alt 3
PTA12 – Alt 3
PTB0 – Alt 3

1 – default
1 – FTM1_1_ALT_A
1 – FTM1_1_ON_B

PTA9 – Alt 3
PTA13 – Alt 3
PTB1 – Alt 3

Channel FTM2

0 – default
0 – FTM2_0_ON_B

PTA10 – Alt 3
PTB18 – Alt 3

1 – default
1 – FTM2_1_ON_B

PTA11 – Alt 3
PTB19 – Alt 3

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 51/52 27.10.2012

• Although the PWM operation can be edge or centred-aligned the setting is shared by
all outputs on a single FlexTimer since the operation of its counter is set to either up
counting mode (edge-alignment) or up/down counting mode (centre-alignment).

• The FlexTimer can be clocked from the system clock, the fixed clock MCGFFCLK or
from an external clock. There are two possible FlexTimer external clock pins which
can be selected for use by any FlexTimer module, on PA18 (default) or PA19
(FTM_CLKIN_1). These are however multiplexed with EXTAL and XTAL and so need
to be used carefully.

• The behaviour of the Flex Timer counter and its outputs during debugging (BDM
mode) can be defined by the selection of the define FTM_DEBUG_BEHAVIOUR in

app_hw_kinetis.h. It can be allowed to run or stopped and its outputs can be

frozen, continue running or be held in a defined state.

NAND Flash Controller

Some of the high speed parts such as the K70 include a NAND Flash controller.

This can be clocked from OSC0ERCLK or from a pre-scaled version of the bus clock, PLL or
OSC0ERCLK.

It can interface gluelessly to standard 8 and 16 bit NAND Flash devices with page sizes of
512 bytes, 2k, 4k and 8k.

It has a 9k RAM buffer, supports ECC and BCH (ECC with multi-bit error correction).

The TWR-K70F120M board has a MT29F2G16ABAEAWP on it. This is a 2Gbit NAND Flash
from Micron in a 48TSSOP housing. It is connected in 16 bit mode and has a total of
256Mbytes data space.

www.uTasker.com µTasker – Kinetis Demo

uTaskerV1.4_Kinetis_demo/0.18 52/52 27.10.2012

K40 Notes:

The K40 in 144 pin housing is highly compatible to the K60. The K40 has some extra pin
functions such as FlexBus option on Port E and Port A.
Port B has SLCD interface – some FlexBus pins have been removed from Ports B and Port
C to Port E.
Port bits D8 and D9 are not connected on the K40
Some Port C bits are at different pin locations on the LQFP package.
K40 doesn’t have Ethernet.

The segment LCD interface consists of 40 lines - LCD_P0 .. LCD_P39

• KwikStik SLCD has 306 segments

• Tower board adapter has 27 segments

SLCD controller support has been added to the project as detailed in the document:
http://www.utasker.com/docs/uTasker/uTasker_SLCD.pdf and shown in the video:
http://www.youtube.com/watch?v=nm2DmZv1rj8

Kinetis Device Family

The µTasker port simulator supports all devices (K10, K20, K30, K40, K50, K51, K52, K53,
K60, K61 and K70) in 80/81, 100, 121, 144, 196 or 256 pin packages as appropriate.

