

uTaskerV1.4_MODBUS/1.07 Copyright © 2012 M.J.Butcher Consulting

Embedding it better...

µTasker Document

MODBUS Module

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 2/78 29.07.2012

Table of Contents

1. Introduction ...3

2. What exactly is MODBUS and where can detailed information about its specification be

found? ..3

3. µTasker MODBUS ports ...4

3.1. Optional Dedicated TCP/Serial Gateway Functionality5

4. How to add the µTasker MODBUS Module to a Project ..6

5. Project Defines ..7

6. Configuring a MODBUS Serial Slave Device ..9

6.1. Serial Interface Settings .. 14

6.2. Multiple Serial Slaves on a Single Interface .. 15

7. Example of Configuration and Control of Coils ... 17

7.1. Example of the use of fnPreFunction() .. 19

7.2. Example of the use of fnPostFunction () ... 20

7.3. fnPreFunction() and fnPostFunction () Message Routing 22

8. Overlaying Coils and Discretes with Registers ... 23

9. User Defined Function Codes and Handling of Public Function Codes by the Application

 25

9.1. User Function Routing .. 26

10. MODBUS RTU Mode ... 27

11. RS485 Operation ... 28

12. Configuring a MODBUS TCP Slave Device .. 30

12.1. Multiple TCP Slaves on a Single TCP Socket ... 32

13. Configuring MODBUS TCP to UART gateways ... 34

14. Configuring Address-based Gateways .. 36

14.1. Serial to Serial MODBUS Bridge .. 36

14.2. TCP to Serial MODBUS Bridge .. 41

14.3. Mapping Slave Addresses in a Gateway Transfer .. 44

15. Configuring a MODBUS master .. 45

15.1. MODBUS Master Transmission .. 46

15.2. MODBUS Master Call-Back Events ... 47

16. MODBUS Queues ... 49

17. Delayed Responses .. 52

18. USB Slave Support .. 54

19. TCP Connection Details – Masters and Gateways .. 55

20. FLASH and SRAM Consumption by the MODBUS Module 60

21. Testing the MODBUS Reference Project in the µTasker Simulator 61

22. Conclusion ... 63

Appendix A – Public Functions Supported by the µTasker MODBUS Module 65

Appendix B – Hardware Dependencies ... 69

a) Hardware Timers used by the MODBUS Module ... 69

b) Processor-specific Hardware Defines ... 70

c) RTS Delay Time Measurements .. 77

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 3/78 29.07.2012

1. Introduction

The µTasker project V1.4 delivers the foundation required for building modular and reliable
user defined applications: its operating system is tightly integrated with a TCP/IP stack and
device drivers for various single-chip processors; the project includes a powerful
demonstration with many features required in real-world projects and ready-to-build projects
for various compiler environments; the µTasker simulator enables testing and further
developing within a comfortable and efficient environment in order to reduce project
development times.

The µTasker MODBUS software module is a ‘drop-in’ protocol module which enables
devices to be integrated into a MODBUS environment in a simple but very flexible manor. It
allows operation as a serial slave device (RTU or ASCII), a TCP slave device, a TCP
gateway to serial (RTU or ASCII), a TCP master or serial master (RTU or ASCII), and a
mixture of these types to multiple TCP ports and/or multiple serial interfaces as desired.

The software is a single module with all features configurable by define and/or at run time
making it a truly universal module, suitable for just about any use.

The µTasker MODBUS software is easy to integrate into existing projects or new projects
and can be fully simulated to ensure efficient development of user applications and
validation.

2. What exactly is MODBUS and where can detailed information about
its specification be found?

MODBUS is quite an old, but still very popular, industrial protocol. It has its roots in the serial
communication between two or more devices on a bus, using either RS232 or RS485. There
is one master on the bus which initiates all requests or commands and one or more slaves.
The serial communication can be ASCII or else binary RTU (Remote Terminal Unit) based.
The full specification of the serial mode can be found at http://www.modbus.org/ - the
document used for the implementation and validation of the µTasker MODBUS software is
“MODBUS over Serial Line – Specification and Implementation Guide V1.02”

The application protocol is generally not serial communication specific and is detailed in the
document “MODBUS APPLICATION PROTOCOL SPECIFICATION V1.1b”

An extension to MODBUS to work over Ethernet (MODBUS TCP) is detailed in the document
“MODBUS MESSAGING ON TCP/IP IMPLEMENTATION GUIDE V1.0b”.

It is assumed that the reader understands the basics of MODBUS operation during the rest
of the document. The abovementioned documents should be adequate as an introduction to
all concepts and as a reference to the technical details.

For details concerning the UART interface in the µTasker project see the “UART User’s
Guide” at http://www.uTasker.com/docs/uTasker/uTaskerUART.PDF

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 4/78 29.07.2012

3. µTasker MODBUS ports

MODBUS Serial Ports

Each MODBUS serial port type can be assigned to a HW UART of its choice, which then
has its own defined configuration (Baud rate, parity, etc. and mode - ASCII or RTU).

MODBUS TCP slaves (listeners)

Each MODBUS TCP slave (listener) has a TCP port number and a definable number of
sessions. The number of sessions determines how many MODBUS TCP masters can be
connected to each TCP port at the same time.

MODBUS TCP masters (clients)

Each MODBUS TCP master (client) has an IP address and port number for contacting
and communicating with its destination TCP slave (listener).

All references to MODBUS ports are performed via their MODBUS port numbers. This
means that a command to send a MODBUS master request can be easily sent to either a
MODBUS serial master port or a MODBUS TCP master port as shown in the following
example:

#define MODBUS_TCP_MASTER_PORT 4

#define MODBUS_SERIAL_MASTER_PORT 1

static const MODBUS_READ_QUANTITY read_coils = {

 57, // starting at coil address 57

 11}; // read 11 coils

fnMODBUS_Master_send(MODBUS_TCP_MASTER_PORT, SLAVE_ADDRESS, MODBUS_READ_COILS,

(void *)&read_coils);

fnMODBUS_Master_send(MODBUS_SERIAL_MASTER_PORT, SLAVE_ADDRESS, MODBUS_READ_COILS,

(void *)&read_coils);

The first transmission is from the TCP master and the second from the serial master.

All communication is thus MODBUS port number specific and generic, irrespective of
whether the ports are physically association with serial HW or Ethernet TCP.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 5/78 29.07.2012

The following shows a typical configuration, illustrating some possible configuration
relationships.

MODBUS Ports

0

1

Serial Masters

2

3

TCP Slaves

(listeners)

4

UART2

Master
RTU

19'200 Bd

UART0

Master
ASCII

9'600 Bd

Port 502

7 sessions

Port 4231
3 sessions

IP 192.168.0.176

Port 502

TCP Master(s)

(client(s))

MODBUS Node - IP 192.168.0.3

User

Interface
Ports

0..4

Optional gateway function (first TCP slave to first serial, etc.)

Figure 3-1: A typical configuration with two UART masters, two TCP slaves and a TCP master

3.1. Optional Dedicated TCP/Serial Gateway Functionality

The MODBUS TCP slave ports can optionally act as dedicated gateways to MODBUS serial
ports. Whether this function is active or not is defined by a MODBUS configuration
parameter.

In the above diagram, both MODBUS TCP slave ports are defined as gateways. Per default,
there is one MODBUS TCP slave for each MODBUS serial slave port and so the coupling
between these is also defined by the ordering in the port number sequencing. The first
MODBUS TCP slave port is always coupled with the first MODBUS serial port. The second
MODBUS TCP slave port is always coupled with the second MODBUS serial port. Since the
coupling is optional, only the first or second pair could be defined. Additional methods of
configuring gateway routing based on slave addresses is described later in the document.

The MODBUS TCP slave ports are configured in the MODBUS_PARS table as detailed later
in the document. The following shows the configuration flags belonging to TCP port 2 for the
gateway functionality, plus its initialisation call:

...

(MODBUS_TCP_SERIAL_GATEWAY | MODBUS_TCP_SLAVE_PORT), // MODBUS mode -

 TCP slave port 2

...

fnInitialiseMODBUS_port(2, &modbus_configuration, &modbus_slave_callbacks, 0);

The dedicated gateway functionality (TCP slave to UART master) is selected when the flag

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 6/78 29.07.2012

MODBUS_TCP_SERIAL_GATEWAY is set and the final initialisation parameter (a master call

back routine) is zero.

Note that the number of sessions belonging to each MODBUS TCP slave port is defined in
config.h by defines MODBUS_SOCKETS_0 and MODBUS_SOCKETS_1 , etc.

MODBUS TCP slave port 2 acts as a gateway to MODBUS serial port 0 due to its gateway
parameter flag MODBUS_TCP_SERIAL_GATEWAY. Received MODBUS queries are therefore

passed on to the UART 2. MOSBUS responses from a remote slave are returned via the
TCP slave to the requesting remote MODBUS TCP master.

4. How to add the µTasker MODBUS Module to a Project

The MODBUS protocol software is delivered as three files which can be added to any
project:

• MODBUS.c [contains all MODBUS support and the MODBUS task]

• modbus.h [contains defines required by the MODBUS module and

its user application]

• modbus_app.c [contains an example application configuration]

The software is written in a processor independent manor as far as possible (for example it is
little- and big-endian independent) but includes small amounts of hardware timer code when
serial RTU mode support is required. See Appendix B to find out whether the RTU mode is
ready for your processor.

The protocol requires one MODBUS task to be operating, which is added to a project using
the following method.

In TaskConfig.h the task name is defined, eg.

#define TASK_MODBUS 'O' // MODBUS task

The MODBUS task prototype is added:

extern void fnMODBUS(TTASKTABLE *);

The task is added to the task list:

const UTASK_TASK ctNodes[] = {

 DEFAULT_NODE_NUMBER, // configuration our single node

...

 TASK_MODBUS, // MODBUS task

...

};

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 7/78 29.07.2012

And finally to the task table:

const UTASKTABLEINIT ctTaskTable[] = {

...

{ "O-MOD", fnMODBUS, MEDIUM_QUE,(DELAY_LIMIT)(NO_DELAY_RESERVE_MONO), 0,

 UTASKER_STOP}, // MODBUS task

...

};

This doesn’t start the MODBUS task but enters it into the scheduling table and gives it
resources ready for it to be used.

The next step is to configure the MODBUS interface and actively support it where
appropriate. The next sections contain various typical configurations and give specific
examples of the use in these modes. This practical approach should help understanding of
the way that the module is configured and how it runs, what work it does autonomously and
where the application is required to interface to it to achieve its project-specific goals.

5. Project Defines

In order to activate general MODBUS support in the project the define USE_MODBUS must be

active in config.h.

Further defines in this file control in more detail exactly which aspects of MODBUS are
included in the code and the demo software. Features that are not required can be easily
removed to save space and improve efficiency.

#define USE_MODBUS_SLAVE // support slave mode of operation

#define USE_MODBUS_MASTER // support master mode of operation

MODBUS serial port type:

#define MODBUS_RTU // support binary RTU mode

#define MODBUS_ASCII // support ASCII mode

#define STRICT_MODBUS_SERIAL_MODE // automatically adjust the UART character

length according to mode (ASCII 7 bit

characters and RTU 8 bit) and force 2 stop

bits if no parity is selected

#define MODBUS_RS485_SUPPORT // support RTS control for RS485 mode

#define FAST_MODBUS_RTU // speeds of greater than 19’200 use calculated

RTU times rather than recommended fixed

values

#define MODBUS_SUPPORT_SERIAL_LINE_FUNCTIONS // support the serial line function at

the slave

#define MODBUS_SUPPORT_SERIAL_LINE_DIAGNOSTICS // support serial line diagnostics

#define MODBUS_CRC_FROM_LOOKUP_TABLE // use a look up table for RTU CRC calculation

(requires more FLASH memory but faster)

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 8/78 29.07.2012

#define MODBUS_SERIAL_INTERFACES 2 // the number of MODBUS serial ports

#define MODBUS_USB_SLAVE // MODBUS serial slave realised as USB

MODBUS TCP port type:

#define MODBUS_TCP // support MODBUS TCP

#define MODBUS_TCP_GATEWAY // TCP gateway support enabled

#define MODBUS_TCP_SERVERS 2 // the number of MODBUS TCP slaves

#define MODBUS_TCP_MASTERS 1 // the number of MODBUS TCP masters

#define MODBUS_SOCKETS_x 5 // the number of sessions on each

MODBUS TCP slave (where x is the server

number 0, 1, 2, etc.)

MODBUS slave options:

#define MODBUS_SHARED_SERIAL_INTERFACES 3

 // number of slave interfaces sharing UARTs

#define MODBUS_SHARED_TCP_INTERFACES 2

 // number of slave interfaces sharing TCP sockets

#define NOTIFY_ONLY_COIL_CHANGES // notify user of individual coil changes only

#define MODBUS_DELAYED_RESPONSE // allow slave parameter interface to delay

 request responses - for example to prepare

 latest data from external location

MAX_QUEUED_REQUEST_LENGTH sets the maximum length of queued requests, which can be
increased or reduced depending on knowledge of request utilisation in the system. This is discussed
further in the section about delayed responses.

Gateway options:

#define MODBUS_GATE_WAY_ROUTING // configurable routing from slave gateways

 (used together with masters)

Queue options:

#define MODBUS_GATE_WAY_QUEUE // support queuing of MODBUS transmissions -

 advisable for gateways and useful for masters

In addition to the project defines in config.h the hardware specific part of the MODBUS

interface can be controlled in app_hw_xxxx.h (where xxxx is the processor type used for

the project). The µTasker demo project is delivered with an example setup of both config.h

and app_hw_xxxx.h which contains MODBUS defines.

Examples from app_hw_xxxx.h are:

#define MODBUS_UART_0 2 // MODBUS serial port 0 uses UART 2

#define MODBUS_UART_1 0 // MODBUS serial port 1 uses UART 0

See appendix B for further hardware defines which may be required for your particular target
processor.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 9/78 29.07.2012

6. Configuring a MODBUS Serial Slave Device

The serial slave device sits on a MODBUS serial bus. It never initiates any commands itself
but responds to the MODBUS master. The MODBUS master will generally be polling certain
values supplied by the slave and can set certain values at the slave.

The MODBUS data model is based on 4 access types (although this can be extended by
adding vendor specific functions):

• Discrete inputs – binary inputs (‘0’ or ‘1’) which can be read but not modified (eg. a
port input state)

• Coils – binary values (‘0’ or ‘1’) which can be read and modified (eg. a port output
state)

• Input registers – 16 bit registers which can only be read (eg. A/D value)

• Holding registers – 16 bit registers that can be read and modified (eg. EEPROM value
or a system variable)

The grouping of the access types is quite flexible and it is also possible to overlap them so
that, for example, the holding registers (R/W) could also be accessed (read) via the input
registers (R).

The following diagram shows a MODBUS serial slave device with various inputs and outputs
which can be grouped into the MODBUS access types.

Asynchronous serial

A

D

INPUT
REGISTER

UART

MODBUS RTU / ASCII

shared variables

Holding registers

USER APPLICATION

MODBUS

application protocol

Discretes

and
Coils

D
ig

it
al

Figure 6-1: A typical MODBUS slave showing various inputs and outputs which can be accessed and
controlled via the serial MODBUS connection

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 10/78 29.07.2012

The master can use various public function codes to request values (single discrete inputs or
register values or range of values) or modify states (single or multiple coils or single or
multiple registers). Examples of the public function codes are 02 to read Discrete Inputs and
16 to write multiple holding registers – the document “MODBUS APPLICATION PROTOCOL
SPECIFICATION V1.1b” contains the complete set and examples of their use.

The following is the user code to initialise the MODBUS serial interface:

...

 (MODBUS_MODE_RTU | MODBUS_SERIAL_SLAVE | MODBUS_RS485_NEGATIVE), // serial port 0 mode

 setting in

 MODBUS_PARS block

...

fnInitialiseMODBUS_port(0, // MODBUS port 0

 &modbus_configuration,

 &modbus_slave_callbacks,

 0); // initialise MODBUS serial interface - port 0

This uses the standard MOBUS port initialisation routine, which is defined as:

extern int fnInitialiseMODBUS_port(unsigned char ucMODBUSport,

 const MODBUS_CONFIG *ptrMODBUS_config,

 const MODBUS_CALLBACKS *ptrModbus_callbacks,

 int (*master_callback)(int iType, MODBUS_RX_FUNCTION *));

The value 0 is passed to inform the MODBUS module that this is the first MODBUS serial
interface (MODBUS serial port 0). It is possible to call it again with the values 1, 2 etc. to
assign further serial interfaces which could either share data or else have their own
autonomous sets of data. Here a second UART interface is configured (in this example the
serial MODBUS port is a master and so also enters a master call-back function):

...

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_POSITIVE), // serial port 1 mode

 setting in

 MODBUS_PARS block

...

fnInitialiseMODBUS_port(1, // MODBUS port 1

 &modbus_configuration,

 &modbus_slave_callbacks,

 fnMODBUSmaster); // initialise MODBUS serial interface - port 1

 It is thus possible to have one device which is attached to two or three (limited by available
serial interfaces) different serial MODBUS buses where the same device’s resources are
seen on each bus or each bus sees different resources. Multiple serial connections are
however usually more useful for interfacing a single TCP gateway to multiple MODBUS
buses as will be seen later.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 11/78 29.07.2012

The MODBUS module requires a global parameter pointer ptrMODBUS_pars which

contains the configuration details of all serial interfaces. This can be a const struct if the

configuration details are fixed but the demonstration example creates the struct on heap

so that it can be modified if required and thus saved in the parameter system.

ptrMODBUS_pars = uMalloc(sizeof(MODBUS_PARS)); // get memory for the MODBUS parameters

fnGetMODBUS_parameters(); // fill the working parameters from configuration settings

The definition of the MODBUS_PARS struct can be found in modbus.h and an example of

project-specific configuration for 2 serial channels may look like the following (from
modbus_app.c):

static const MODBUS_PARS cMODBUS_default = {

 MODBUS_PAR_BLOCK_VERSION,

 {

 0x23, // slave address - serial port 0

 0, // (master address not relevant) - serial port 1

 },

 {

 (CHAR_8 + RS232_EVEN_PARITY + ONE_STOP + CHAR_MODE),

 // serial interface settings (ASCII mode uses 7 bits) - serial port 0

 (CHAR_8 + RS232_EVEN_PARITY + ONE_STOP + CHAR_MODE),

 // serial interface settings (ASCII mode uses 7 bits) - serial port 1

 },

 {

 SERIAL_BAUD_19200, // baud rate of serial interface - serial port 0

 SERIAL_BAUD_9600, // baud rate of serial interface - serial port 1

 },

 {

 (MODBUS_MODE_RTU | MODBUS_SERIAL_SLAVE | MODBUS_RS485_NEGATIVE),

 // default to RTU mode as slave - serial 0

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_POSITIVE),

 // default to RTU mode as master - serial 1

 },

 { // only when ASCII mode enabled

 (DELAY_LIMIT)(1*SEC), // max. inter-character delay (ASCII) - serial port 0

 (DELAY_LIMIT)(2*SEC), // max. inter-character delay (ASCII) - serial port 1

 },

 {

 0x0a, // ASCII mode line feed character - serial port 0

 0x0a, // ASCII mode line feed character - serial port 1

 },

 { // only when master operation enabled

 (DELAY_LIMIT)(2*SEC), // MODBUS master maximum wait for a response from a slave – 0

 (DELAY_LIMIT)(3*SEC), // MODBUS master maximum wait for a response from a slave – 1

 },

 {

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master broadcast timeout - serial port 0

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master broadcast timeout - serial port 1

 },

 { // only when supporting serial line functions

 'u', 'T', 'a', 's', 'k', 'e', 'r', '-', 'M', 'O', 'D', 'B', 'U', 'S', '-',

 's', 'l','a','v','e' },

 ... // others – see MODBUS TCP below

};

Inter-character delays and line feed characters are only required if ASCII mode is to be
supported.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 12/78 29.07.2012

Master maximum wait times and broadcast timeouts are only required when master mode is
to be supported.

The string name is only required if serial line functions are to be supported.

The characteristics of each serial interface are defined so that the corresponding UART can
be configured ready for use when fnInitialiseMODBUS_port() is called.

The physical UART used by each serial connection should be defined in app_hw_xxxx.h

(where xxxx is the processor type):

#define MODBUS_UART_0 2 // MODBUS serial port 0 uses UART 2

#define MODBUS_UART_1 0 // MODBUS serial port 1 uses UART 0

The data model for the MODBUS slave connection is passed in the MODBUS configuration

static const MODBUS_CONFIG modbus_configuration = {

 &test_discretes, // read-only discrete input configuration

 &test_coils, // read/write coil configuration

 &test_input_regs, // read-only input registers

 &test_holding_regs // read/write input registers

};

The four access types can be defined here, where a 0 means that they don’t exist. The
discretes and coils have a table of type MODBUS_BITS:

#define DISCRETES_START 15 // start address

#define DISCRETES_END 43 // end address

#define DISCRETES_QUANTITY ((DISCRETES_END - DISCRETES_START) + 1) // quantity

static MODBUS_BITS_ELEMENT discretes[_MODBUS_BITS_ELEMENT_SIZE(DISCRETES_QUANTITY)] = {0};

static MODBUS_BITS test_discretes = { discretes, {DISCRETES_START, DISCRETES_END}};

#define COILS_START 10 // start address

#define COILS_END 50 // end address

#define COILS_QUANTITY ((COILS_END - COILS_START) + 1) // quantity

static MODBUS_BITS_ELEMENT coils[_MODBUS_BITS_ELEMENT_SIZE(COILS_QUANTITY)] = {0};

static MODBUS_BITS test_coils = { coils, {COILS_START, COILS_END}};

and the input and holding registers a table of type MODBUS_REGISTERS:

#define INPUT_REGS_START 24 // start address

#define INPUT_REGS_END 29 // end address

#define INPUT_REGS_QUANTITY ((INPUT_REGS_END - INPUT_REGS_START) + 1) // quantity

static unsigned short input_regs[INPUT_REGS_QUANTITY] = {0};

static MODBUS_REGISTERS test_input_regs = { input_regs, {INPUT_REGS_START, INPUT_REGS_END}};

#define HOLDING_REGS_START 2 // start address

#define HOLDING_REGS_END 6 // end address

#define HOLDING_REGS_QUANTITY ((HOLDING_REGS_END - HOLDING_REGS_START) + 1) // quantity

static unsigned short holding_regs[HOLDING_REGS_QUANTITY] = {0};

static MODBUS_REGISTERS test_holding_regs = { holding_regs, {HOLDING_REGS_START,

HOLDING_REGS_END}};

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 13/78 29.07.2012

In both cases the start address and end address are specified (for valid address range
checking) and then an optional pointer is set to where the entries are situated in memory. For
example:

static MODBUS_BITS_ELEMENT discretes[_MODBUS_BITS_ELEMENT_SIZE(DISCRETES_QUANTITY)] = {0};

and

static unsigned short input_regs[INPUT_REGS_QUANTITY] = {0};

Here the entries are arrays of local variables (elements MODBUS_BITS_ELEMENT are used

to hold bits states or coils and discrete inputs and each register has 16 bits, as defined by
MODBUS).

Based on this information, the MODBUS module can autonomously handle reading and
reporting of these entry contents and can also write to coil and holding registers with no user
intervention. This may be adequate for some uses, where the user can simply update values
when it feels fit and read latest holding register/coil values when it needs to do so. In this
case that would be all that is required to get the MODBUS slave operating!

However in most real projects this may be a little simplistic and so extra control is available in
the form of call-backs and access type definitions. The call-backs are passed during
configuration with the modbus_callbacks parameter:

static const MODBUS_CALLBACKS modbus_callbacks = {

 fnMODBUSPreFunction,

 fnMODBUSPostFunction,

 fnMODBUSuserFunction,

};

The three call-backs are used in different circumstances, which can be summarised as
follows:

• fnMODBUSPreFunction() is called before the MODBUS slave responds to a query.
This allows the user to update any entries in the table if it requires before the
response is sent. An example may be to update a discrete entry with the latest value
read from a hardware processor port. The call-back saves the user from having to
regularly update entries even when they are not being read and ensures that the
returned value is always up-to-date.
In case the application needs to first collect the data from a source requiring a
request (eg. from an external device via a different interface) it is possible to delay
returning the value by using the “Delayed Responses” technique as detailed in
chapter 17.

• fnMODBUSPostFunction() is called after contents have been updated, this

allowing the user to react to specific changes if needed.

• fnMODBUSuserFunction() is called when the MODBUS module cannot read or

update entries by itself. For example the table may not exist physically in memory and
so the user needs to handle the function itself. This can also be used to handle
function codes which do not belong to the public range, but are to be handled as
vendor specific types.

If no call-backs are required, the call-back table can be entered with a zero pointer. Likewise,
individual call-backs which are not required may be entered as zero pointers. Furthermore,

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 14/78 29.07.2012

call-backs can be entered but no parameter table used by entering the table as a zero
pointer.

Each call-back type has the same parameters and have the same return values, as
described later when discussing their control capabilities.

 int (*)(int iType, MODBUS_RX_FUNCTION *); // general call-back prototype

6.1. Serial Interface Settings

The serial interface settings are configured in the MODBUS_PARS table, as illustrated in the

previous section. In accordance with the MODBUS requirements the speed can be set from
1200 Baud to 115’200 Baud. When used in RTU mode the character length should be 11 bits
(start bit, 8 data bits, parity bit and stop bit). In ASCII mode the character length should be 10
bits (start bit, 7 data bits, parity bit, stop bit).

In both cases, when no parity is used, two stop bits should be set to compensation the total
character length.

When the project define STRICT_MODBUS_SERIAL_MODE is set, the length of the character

is automatically adjusted according to the mode setting. This means that the data bit length
will be forced to 8 when RTU mode is specified and two stop bits configured when parity is
disabled. Similarly in ASCII mode 7 data bits are forced as well as assuring that the parity
and stop bit length is correct. User setting combinations which do not correspond to the
MODBUS specification are thus automatically ‘corrected’ based on the selected operating
mode (MODBUS_MODE_RTU or MODBUS_MODE_ASCII).

In systems where both ends of the UART connection are under proprietary control and the
MODBUS specification must not be adhered to, removing the define
STRICT_MODBUS_SERIAL_MODE allows any combination of setting to be used, even if they

do not adhere to the formal specification.

In all case it is however important that the user selects the same setting at all UART nodes
on a MODBUS bus.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 15/78 29.07.2012

6.2. Multiple Serial Slaves on a Single Interface

A MODBUS serial slave has a unique slave address on the bus and responds to requests
and commands destined to this address, or to broadcast commands. As described in this
section the slave can possess a set of parameters and call-backs, which are acted on or
called when MODBUS functions are handled.

Activating the option MODBUS_SHARED_SERIAL_INTERFACES enables the use of multiple

MODBUS serial slaves on a single serial (UART) interface. Each of these slaves can be
configured with its own unique parameters and call-backs, or share parts or all with other
slave interfaces. This allows a single physical device on the MODBUS to behave as several
independent slave devices, where each has its own unique slave address and so responds
only to functions addressed to it. Received broadcast commands are handled by all slaves in
the order that the slaves are defined.

The following code shows first a MODBUS slave port being initialized, followed by two
additional MODBUS slaves added to it. All slaves share the physical serial interface
resources and settings as defined by the main port initialization.

fnInitialiseMODBUS_port(0, &modbus_configuration, &modbus_slave_callbacks, 0);

 // initialise MODBUS serial interface - port 0

#if defined MODBUS_SHARED_SERIAL_INTERFACES > 0

 fnShareMODBUS_port(0, &modbus_configuration_1, &modbus_slave_callbacks_1, 2);

 // additional MODBUS serial slave sharing port 0 UART - bus address 2

 fnShareMODBUS_port(0, &modbus_configuration_2, 0, 3);

 // additional MODBUS serial slave sharing port 0 UART - bus address 3

#endif

The define MODBUS_SHARED_SERIAL_INTERFACES is set to the total amount of shared

slaves (the value 2 is adequate for the example) in the system. The shared slaves can be
added to any existing serial MODBUS slave available and any number can be added as long
as the total does not exceed the MODBUS_SHARED_SERIAL_INTERFACES limit. As the

example shows, each shared slave can have its own set of parameters and call-backs.

The address given to each shared slave is passed to the fnShareMODBUS_port() and not

taken from the main MODBUS configuration. These values can however also be added to
the main uParameterSystem parameter block to make them user configurable. The example
assumes that the serial MODBUS slave main configuration uses the slave address 1 and the
shared slaves are then defined consecutive addresses 2 and 3. No two slaves on the
MODBUS serial port should have the same address.

• When serial line functions with diagnostics counters are used, each shared slave has
its own individual set of counters.

• When broadcast functions are handled, each of the shared slaves process the
commands, whereby the processing order begins with the main serial MODBUS slave
(slave address 1 in the example) followed by the shared slaves in the order that they
were defined (2 and then 3 in the example).

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 16/78 29.07.2012

Figure 6-2 illustrates the case according to the example configuration. Although there is only
one physical serial interface the MODBUS master can communicate with multiple MODBUS
slaves. Each slave has its own unique parameters. Slave addresses 1 and 2 have their own
call-backs allowing handling MODBUS requests and commands to each slave by its own
application. Slave address 3 has been configured to have no call-backs (but could have its
own, or share with other slaves).

Serial MODBUS

MASTER

UART0

Slave 4

Slave 5

Slave 6

Slave 7
1, 2, 3

MODBUS

Slave

Application

1

MODBUS

Slave

Application

2

Serial Slave

3

Serial Slave

1

Serial Slave

2

Parameters

Slave 3

Parameters

Slave 1

Parameters

Slave 2

Serial Interface

Figure 6-2: Multiple, shared MODBUS slaves on a single port

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 17/78 29.07.2012

7. Example of Configuration and Control of Coils

Coils are just one example of MODBUS functions that can be controlled and will be used
here to illustrate in more detail how the user specifies the control block content and how the
MODBUS slave interacts with this block.

According to the MODBUS Application Protocol Specification V1.1b coils represent binary
values in a system, which can be both read and written (modified). There is the capability to
address up to 65’536 different coils (addresses from 0x0000 to 0xffff, which represent coils
1..65’536).

It is not necessary to support all 65’536 coils and most systems will also not have this many
individual bits to control. In this case the coils are grouped together into a block with a
particular address range. The following example shows the user configuration of just a small
block of just 30 coils set to a block starting at the coil address 10 and ending at coil address
39.

#define COILS_START 10 // start address

#define COILS_END 39 // end address

#define COILS_QUANTITY ((COILS_END - COILS_START) + 1) // quantity

static MODBUS_BITS_ELEMENT coils[_MODBUS_BITS_ELEMENT_SIZE(COILS_QUANTITY)] = {0};

static MODBUS_BITS test_coils = { coils, {COILS_START, COILS_END}};

The coils block is just one of the MODBUS control block elements which are included in the
user’s configuration:

static const MODBUS_CONFIG modbus_configuration = {

 &test_discretes, // read-only discrete input configuration

 &test_coils, // read/write coil configuration

 &test_input_regs, // read-only input registers

 &test_holding_regs // read/write input registers

};

Moreover, the configuration block can belong to either just one MODBUS slave interface or
be shared between several MODBUS slave interfaces.

fnInitialiseMODBUS_port(0,

 &modbus_configuration,

 &modbus_slave_callbacks,

 0); // initialise MODBUS serial interface - port 0

The MODBUS master, sending function codes to read or modify coils must be aware of the
coil address locations. If it tries to address coils which are not defined, MODBUS exceptions
are returned. The same is true of other invalid function requests, such as trying to read more
coils than are available.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 18/78 29.07.2012

The exception handling is defined by the MODBUS specification as follows (see also the
read coils state diagram, figure 11, in the specification).

- Function code not supported - Exception Code 1

- Quantity of requested output not between 1 and 2000 - Exception Code 3

- Requested address not in the available block, or the
quantity exceeds the available address range - Exception Code 2

- Read could not be performed successfully - Exception Code 4

The following example MODBUS read coil illustrates a valid request (RTU format is used)

0x7f 0x01 0x00 – 0x0a 0x00 – 0x0b 0x49 – 0x59

Slave
address

Function Code –
Read Coils

Start add 10 Quantity 11 CRC

Since the start address is within the coil block range and requested quantity is also
completely within the range this is a valid request and the MODBUS slave will answer with
the requested data.

The next example MODBUS read coil illustrates an invalid request (RTU format is used)

0x7f 0x01 0x00 – 0x21 0x00 – 0x14 0x78 – 0x99

Slave
address

Function Code –
Read Coils

Start add 33 Quantity 20 CRC

Although the start address is within the coil block range, the requested quantity requires the
end address to enclose the coil 52. This is outside of the defined range and so results in the
exception 2 being returned.

The MODBUS slave has direct access to the coil values as held by the array coils[]. The

size of this array is known and so the slave will never try to access outside of it.

The coils may not be const data blocks since they can also be modified by the MODBUS
slave when it receives either Write Single Coil or Write Multiple Coil functions.

Reads can be handles without any user intervention if the coil values in the array are kept
synchronised to system values. In some solutions the coil values in the coil array will be the
real coil value in the system, but in other solutions the coil values in the array will be only
representing other system values (eg. a power output state mapped to a certain coil bit).

In order to allow the user to synchronise coil values only when requested by a MODBUS
master the fnPreFunction() call-back is used. This passes information including the

function code, the address and the length as specified by the master and can be acted on as
required; doing nothing, updating all content, or just updating the requested part of the
content as required.

In the case of a write to coils, example with the function code 5 (Write Single Coil), the slave
can also operate autonomously. That means that the MODBUS slave accesses and modifies
the coil array, after which it allows the user to react to the changes by calling
fnPostFunction() with information containing the function code, the address and the

length as specified by the master. The user can again chose to either ignore the event, react
to all states in the coil array, or else just to the ones which may have changed. In some
cases the new coil states will be the system coil states directly or else the user will transform
a state in the array to another element, such as a port output to control an external switch.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 19/78 29.07.2012

The following MODBUS single coil example illustrates a valid request (RTU format is used)

0x7f 0x05 0x00 – 0x0c 0xff – 0x00 0x49 – 0x59

Slave
address

Function Code –
Write single coil

Coil add 12 Value ‘1’ CRC

This will result in the third bit in the first byte of the coil array being set to ‘1’. This is because
the address corresponds to the third coil from the start address of 10.

7.1. Example of the use of fnPreFunction()

// This routine is called by the MODBUS interface prior to a read

// It can be used to update the MODBUS tables if required

//

static int fnMODBUSPreFunction(int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 switch (iType) {

 case PREPARE_COILS: // coils are being read - update table values

 if ((modbus_rx_function->usElementAddress == COILS_START) &&

 (modbus_rx_function-> usElementLength == 16)) { // only allow reading of 16
 // coils from start address

 coils[0] = 0xf0; // update the values so latest states can be returned

 coils[1] = 0x0a;

 }

 else {

 return MODBUS_EXCEPTION_SLAVE_DEV_FAILURE; // otherwise cause exception 4

 }

 break;

 default:

 break;

 }

 return 0;

}

This example shows special handling of the type PREPARE_COILS. This type is requested

when the MODBUS master has requested that coils be read and the parameters
modbus_rx_function->usElementAddress and modbus_rx_function->

usElementLength refer to the starting address and the quantity of coils being read. The

user call-back allows only reads of 16 coils from the start address of the coil table, otherwise
it reports that the coils could not be read, causing the MODBUS slave driver to return
exception 4. Normally, such restrictions would not be imposed by the user but this serves to
illustrate both the basic operation and the control that the user has.

When a read of 16 coils, starting at the first coil address, is detected, the user code fills out
the first two coil table entries with a fixed value, which will then be reported by the MODBUS
slave driver to the requesting MODBUS master. This example assumes that the coils are
saved as bytes in the local table, which however doesn’t have to be the case as illustrated in
the following chapter. Often it will not be necessary to update the coil table values in the
fnPreFunction() since the values can be changed at any time previously to remain

synchronised. Sometimes it may be more practical to synchronise them only on demand –
eg. when they have to be read from a hardware port, which needs only to be updated when
there is a need to inform of the instantaneous values.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 20/78 29.07.2012

7.2. Example of the use of fnPostFunction ()

The fnPostFunction() is called after the MODBUS slave driver has updated contents.

The following shows the user interface reacting to particular coil changes:

static int fnMODBUSPostFunction(int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 unsigned short usAddress = modbus_rx_function->usElementAddress;

 unsigned short usLength = modbus_rx_function->usElementLength;

 switch (iType) {

 case UPDATE_COILS: // coils have been altered - react to changes if necessary

 {

 MODBUS_BITS_ELEMENT coil_bit;

 MODBUS_BITS_ELEMENT coil_element;

 unsigned short usTableAddress = (usAddress - COILS_START);

 // referenced to the coil table

 coil_bit = (0x01 << usTableAddress%MODBUS_BITS_ELEMENT_WIDTH); // first coil bit

 coil_element = usTableAddress/MODBUS_BITS_ELEMENT_WIDTH;

 // the first coil element location

 while (usLength != 0) {

 fnSetCoil(usAddress, (unsigned char)((coils[coil_element] & coil_bit) != 0));

 if (coil_bit & (0x1 << (MODBUS_BITS_ELEMENT_WIDTH - 1))) {

 coil_bit = 0x01;

 coil_element++;

 }

 else {

 coil_bit <<= 1;

 }

 usAddress++;

 usLength--;

 }

 }

 break;

 }

 return 0;

}

The type UPDATE_COILS is called to indicate that coil values have been written to.

modbus_rx_function->usElementAddress specifies the starting coil address and

modbus_rx_function-> usElementLength the number of coils actually written to. The

code calculates which coil storage elements and individual bits are involved and the sub-
routine fnSetCoil() is then used to specifically react to certain coil changes. An example

would be:

// Handle special coil controls

//

static void fnSetCoil(unsigned short usAddress, unsigned char ucState)

{

 switch (usAddress) {

 case 14: // map this coil to a relay output

 if (ucState != 0) {

 RELAY1ON();

 }

 else {

 RELAY1OFF;

 }

 break;

 }

}

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 21/78 29.07.2012

This example shows coil address 14 being dedicated to the control of a relay. Other coils are
not supported but the routine could be extended to specifically handle every possible coil in a
dedicated manner.

The example shows that the updated coil address block is signalled and the user can
process the entire block. In some cases individual coil states may not have changed but this
is not indicated directly. If the user prefers to only receive notification of coil changes, the
project define #define NOTIFY_ONLY_COIL_CHANGES will result in the

fnPostFunction() only being called on coil content change due to writes. In this case it

will be called each time individual coils change state, with the modbus_rx_function-

>usElementAddress parameter set to the coil and the modbus_rx_function->

usElementLength contains either 0 or 1 depending on the new coil state. This means that

the fnPostFuntion() may be called multiple times for a single “Write Multiple Coils”

function.

A corresponding fnPostFunction() for this case is illustrated below:

static int fnMODBUSPostFunction(int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 switch (iType) {

 case UPDATE_COILS: // coils have been altered - react to changes if necessary

 fnSetCoil(modbus_rx_function->usElementAddress,

 (unsigned char) modbus_rx_function-> usElementLength);

 // call specific coil handler

 break;

 }

 return 0;

}

There are three main differences.

1) The function is called per changed coil and not per coil block.

2) If there are no changes resulting from a coil write the user function will not be called
at all.

3) The user doesn’t need to map the address to a particular coil bit since the new coil
state is passed directly.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 22/78 29.07.2012

7.3. fnPreFunction() and fnPostFunction () Message Routing

The Pre- and Post-Functions have the special ability to route any particular received Modbus
message to any other MODBUS master port. This can be after already processing its content
(for example after updating local values based on the function content) or instead of
processing it locally. This allows routing based on particular function codes, particular
element types, certain valid address ranges or even on particular data content.

To route the received message to another MODBUS port the user handler needs only to
return the value (MODBUS_APP_GATEWAY_FUNCTION – MODBUS port number to be

routed to). For example

return (MODBUS_APP_GATEWAY_FUNCTION – 2); // route to MODBUS port 2

For further details about gateway routing possibilities see the chapter “Configuring Address-
based Gateways”.

Note also that the user call back function (see the chapter “User Defined Function Codes and
Handling of Public Function Codes by the Application”) also has the ability to route messages
received by a local MODBUS slave to other MODBUS ports based on further function codes
and out-of-bounds addresses.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 23/78 29.07.2012

8. Overlaying Coils and Discretes with Registers

It is often practical to be able to access coils and discrete by not only their normal public
functions, such as Read Discrete Inputs (0x02) or Read Coils (0x01), but also

using Register functions, such as Read Input Register (0x04) and Read Holding
register (0x03).

The µTasker MODBUS solution allows this to be achieved in an architectural independent
manor as described in this section.

Figure 8-1 shows an array of coils which is configured to be constructed from an array of
bytes. The coils are counted from right to left (LSB to MSB) according to the MODBUS
convention. In addition, several standard registers (16 bit wide) are shown. These areas are
totally independent.

0123456

89101112131415

181920212223 17 16

262728293031 25 24

Register 4

Coils 0..31 stored in a byte array

Standard Registers 0..9 (16 bit by definition)

b0

Register 5 b0

Register 6 b0

Register 7 b0

Register 0 b0

Register 1 b0

Register 2 b0

Register 3 b0

Register 8 b0

Register 9 b0

7

Figure 8-1 Independent coil and register tables using byte and short word storage elements
respectively

Figure 8-2 shows the same standard registers sharing locations with the coils. This means
that they are overlaid, occupying the same physical memory space.

Coils 0..31, overlayed

in the register block
Register 4

Standard Registers 0..9 (16 bit by definition)

Register 5

Register 6

Register 7b0

Register 0b0

Register 1b0

Register 2b0

Register 3

Register 8b0

Register 9b0

b0

b0

0123456789101112131415

181920212223 17 16262728293031 25 24

Figure 8-2 Overlaid coils and registers using short word storage elements

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 24/78 29.07.2012

It is to be noted that this requires that the coils are allocated short word aligned locations so
that they can overlay the short word length standard registers. In addition it is seen that the
ordering of the coils in the array is still from right to left.

What is however not visible in this diagram is the fact that the actual byte storage of the coil
bits is architectural dependent: big-endian will store them with coils 0..7 at an odd byte
address and coils 8..15 at an even byte address; little-endian will store them with coils 0..7 at
an even byte address and coils 8..15 at an odd byte address.

The user doesn’t have to know the details since the accesses to the array may take place as
short words, as defined, and the MODBUS slave interface automatically handles the details
when accessing the register locations as coil types, irrespective of the architecture used.

As an example consider the coils 0..15 having the values
0,0,0,1,0,0,1,0,0,1,0,0,1,0,0,0.

MODBUS convention means that they will be stored in a short word as 0x1248, which means
that a register read will return this same value. When the first 16 coils are read, the coil
values returned will be 0x48 [coils 7..0], 0x12 [coils 15..9]. Of course it is also possible to
read coils from 1..16, 2..17 etc. which means that the coil bits are simply shifted accordingly.

The user may chose the storage types of coils and discrete according to requirements. If no
overlaying is required they can be stored as unsigned char. This is defined in types.h

by setting #define MODBUS_BITS_ELEMENT_WIDTH 8. This simplifies the driver code

slightly but doesn’t guaranty that overlaying will operate on all architectures (in fact it will
operate correctly on a little-endian architecture as long as the coil block starts aligned to a
short word address in the register block).

To ensure that overlaying coils and registers will always operate correctly, the setting
#define MODBUS_BITS_ELEMENT_WIDTH 16 can be used. This ensures that the coil and

discrete arrays operate with short word storage elements and that there is no architectural
dependency in the results and should be enforced in a big-endian environment.

Figure 8-3 shows the setting #define MODBUS_BITS_ELEMENT_WIDTH 32, which can be

used if coils are overlaid with extended register types (eg. Enron functions). In this case coil
and discrete storage will automatically be in long word arrays and, again, all coil operations
will automatically ensure that there are no architectural dependencies. In a little-endian
environment the byte element storage is still possible as long as the coil block starts on a
long word boundary.

Register 4

Extended Registers 0..9 (32 bit)

Register 5

Register 6

Register 7b0

Register 0b0

Register 1b0

Register 2b0

Register 3

Register 8b0

Register 9b0

b0

b0

0123456789101112131415181920212223 17 16262728293031 25 24

b0

Coils 0..31, overlayed in the register block

Figure 8-3 Overlaid coils and registers using long word storage elements

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 25/78 29.07.2012

9. User Defined Function Codes and Handling of Public Function
Codes by the Application

The MODBUS Application Protocol defines a number of functions such as Read Coil and
Write Single register. These are known as public function codes since they are well defined,
standardised and guaranteed to be unique. They occupy the range 1..65, 73..99 and
111..127.

Between the public function codes the ranges 65..72 and 100..110 are user defined function
codes which may be used for user specific purposes. The use of these function codes is not
guaranteed to be unique but are otherwise free in a proprietary system.

Function codes above 127 should generally not be used since they are reserved for use by
legacy products.

A MODBUS slave can be defined an optional call-back function when the MOBUDS port is
configured. This user call back can be used to handle all function codes which are not
supported by the MODBUS package, whereby the supported functions is also configurable
by removing all public functions which are not required to be handled automatically by the
slave (the function codes to be left out are defined in config.h). The user call-back has the

same prototype as all other call-backs:

int fnMODBUSuserFunction(int iType, MODBUS_RX_FUNCTION *modbus_rx_function);

The MODBUS_RX_FUNCTION pointer is to a struct containing all information about the

received frame and a pointer to its data content, meaning that the user code can fully handle
the frame as desired. In the case of function codes not supported in the MODBUS slave
module the iHandlingType is USER_RECEIVING_MODBUS_UNDEFINED_FUNCTION.

• Should the user code not wish to handle the function code in question it can return
MODBUS_EXCEPTION_ILLEGAL_FUNCTION, resulting in the MODBUS slave

responding with this exception.

• If the user code handles the function code it should return 0 or, in cases of error, one
of the return values
MODBUS_EXCEPTION_ILLEGAL_FUNCTION,

MODBUS_EXCEPTION_ILLEGAL_DATA_ADD ,

MODBUS_EXCEPTION_ILLEGAL_DATA_VALUE or

MODBUS_EXCEPTION_SLAVE_DEV_FAILURE as appropriate.

• Should the user not have entered a user call-back handler, the exception
MODBUS_EXCEPTION_ILLEGAL_FUNCTION will always be returned automatically by

the slave without the user being involved.

In addition to handling non-implemented function codes, the user call back can be used to
handle codes acting on certain elements such as coils, registers etc. When the particular
element is not declared in the user parameter table (it is configured with a zero pointer rather
the address of the elements) the user call back will also be executed so that it can
specifically handle this type. The value of iHandlingType in this case is

USER_RECEIVING_ALL_MODBUS_TYPE. The user code must also fully handle the function

code in this case and return 0, or an exception code as appropriate.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 26/78 29.07.2012

In some cases the user may wish to allow a specific address range of a certain function code
to be handled automatically by the MODBUS slave but other ranges to be handled by the
user call-back. In this case the user call back will be executed when the function code’s
address range doesn’t correspond to the standard address range as defined by the
element’s parameters. In this situation the value of iHandlingType is

USER_RECEIVING_MISSED_RANGE. Again the user handler should fully handle thus

function code and return either 0, or an appropriate exception code.

Finally note that if the MODBUS port is declared without any parameters (zero pointer) all
function codes for this MODBUS slave port will result in the user call-back handler being
called, as if no function codes were supported in the slave module.

9.1. User Function Routing

In all cases above when the user call back is executed the user code can decide to route the
received command/request to another MODBUS port. Depending on requirements, this can
be after already processing its content (for example after updating local values based on the
function content) or instead of processing it locally. This allows routing based on particular
function codes, particular element types or on certain function code address ranges.

To route the received message to another MODBUS port the user handler needs only to
return the value (MODBUS_APP_GATEWAY_FUNCTION – MODBUS port number to be

routed to). For example

return (MODBUS_APP_GATEWAY_FUNCTION – 2); // route to MODBUS port 2

For further details about gateway routing possibilities see the chapter “Configuring Address-
based Gateways”.

Note also that the Pre- and Post-Functions (see the chapter “Example of Configuration and
Control of Coils”) also have the same ability to route messages received by a local MODBUS
slave to other MODBUS ports.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 27/78 29.07.2012

10. MODBUS RTU Mode

MODBUS RTU serial mode of operation allows binary content to be sent and received. It is
thus more efficient than ASCII mode since it doesn’t have to send two 7-bit characters to
represent one 8-bit value. Its framing operation is not based on control characters but instead
on transmission timing. A frame starts as soon as a first character is transmitted and its end
is recognised by the receiver when no more characters are detected during a period of 3.5
character periods. One character consists of always 11 bits (start-bit, 8 data-bits, a parity bit
[usually even parity], plus one stop bit).

Using a baud-rate of 19’200 as reference, the transmission period of a single character is
573us. The termination of frame data on the bus is thus recognised when there is an idle
period of longer than 2ms. During individual characters within a frame, idle periods of greater
than 1.5 character periods are not allowed otherwise the frame is considered to be corrupted
by the receiver and will be rejected.

8 data bits

Start-bit Parity-bit Stop-bit

Bit period
52.08us

Character period
572.9us

Start of frame Inter-character time

0..<= 1.5 character periods (860us)

OK

First character
Following character(s)

Inter-character time
> 1.5 and < 3.5 character periods

(>860us .. < 2005us)

Illegal

Figure 10-1 Character and illegal inter-character space timing at 19’200Baud reference

Figure 10-1 illustrates the timing of the 11 bit RTU mode character at 19’200 Baud. As long
as the inter-character spacing of following characters remains less than or equal to 860us
they are valid and so belong to the present frame being received. If a following character is
detected after an inter-character period of greater than 860us but less that 2005us it is
considered to be illegal and the frame rejected.

8 data bits

Start-bit Parity-bit Stop-bit

Bit period
52.08us

Character period
572.9us

Start of frame Inter-character time

0..<= 1.5 character periods (860us)

OK

First character
Following character(s)

Idle time >= 3.5 character periods
(>= 2005us)

Complete frame received End of frame

Figure 10-2 Complete RTU frame where end of frame is recognised by a 3.5 character period idle time

Figure 10-2 illustrates the timing of the 11 bit RTU mode character at 19’200 Baud in the
case of a complete valid frame. When the receiver recognises the 3.5 character period idle
time it treats the content of the received, valid frame.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 28/78 29.07.2012

For baud rates of greater than 19’200 the MODBUS specification recommends that fixed
intervals of 750µs for the 1.5 character and 1’750µs for the 3.5 character periods are used by
the receiver.

By activating the define FAST_MODBUS_RTU shorter times than the recommended fixed

values are used for speeds greater than 19’200 Baud. In this case the inter-character space
is calculated for the Baud rate used. This allows faster reaction times to RTU receptions – for
example: 335µs at 115’200 Baud rather than 1’750µs. Its use may however need to be
verified in the operating environment since it is also correspondingly more sensitive to small
character spaces during frame reception.

The RTU mode of operation is specified in the serial MODBUS port configuration with the
flag MODBUS_MODE_RTU. The MODBUS_MODE_ASCII would specify the alternative ASCII

mode of operation.

11. RS485 Operation

It is usual to operate a multi-slave MODBUS on an RS485 bus. This can consist of a semi-
duplex two wire electrical connection or a four wire full duplex connection. The MODBUS
protocol doesn’t however use the full duplex capability of such a bus.

When a device transmits on the RS485 bus it may need to drive its output transceiver. For
this reason in the RS485 mode the RTS line is activated when transmitting and deactivated
once the transmission has completed.

TXD
Character Character Character Character Character Character

RTS

MODBUS Frame

Figure 11-1 RTS control during a single MODBUS frame (showing negative logic RTS, which is
hardware dependent and configurable)

As illustrated in figure 11-1 the RTS signal is asserted at the start of the first character of a
MODBUS frame. The MODBUS frame consists of a number or characters which are each
transmitted asynchronously. There can be a short gap between each character, although not
longer than 1.5 character periods in the RTU mode. The RTS remains active until the end of
the final stop bit of the last character in the frame, after which it is de-asserted as quickly as
possible to avoid the bus being driven when the slave already starts sending back an
answer. (A de-assertion of the RTS during the transmission of the final stop bit is generally
acceptable since the idle state of the bus corresponds to the same state.)

• In the case of RTU operation the slave will process a received frame after a period of
no less that 3.5 character intervals. This means that a slave will never answer within
this time and the RTS control accuracy does not need to be very high.

• In the case of ASCII operation the slave detects the end of the MODBUS frame from
its end characters. In this situation it can already handle the received frame as soon

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 29/78 29.07.2012

as the last character in the frame has been received. It can thus also return an
answer to a request much faster than in RTU mode. The requirement for RTS
accuracy is thus higher in ASCII mode.

RXD

TXD

RTS

Differential Bus - RS485

UART

Figure 11-2 Standard RS485 half-duplex bus connection (RTS polarity may be configurable)

Figure 11-2 shows a typical circuit for driving a half-duplex RS485 transceiver. This assumes
TX driving when RTS is high. The signal polarity is configured for each serial interface using
either MODBUS_RS485_NEGATIVE or MODBUS_RS485_POSITIVE in the MODBUS_PARS

configuration block as seen in the serial port configuration examples, whereby the polarity
refers to the signal at the processor interface. This allows the correct signal to be generated
for direct connection to the RS485 transceiver hardware.

RXD

TXD

Differential Bus - RS485

UART

Figure 10-3 Alternate method for connecting RS485 half-duplex transceiver without RTS control

Figure 10-3 shows an alternative circuit for avoiding RTS control. The TX input is connected
to 0V and the transceiver is controlled exclusively by the TXD line. When the TXD output is
idle (‘1’) the receiver is enabled and the TX output is not driven. When the TXD output a ‘0’
(eg. the start bit) the receiver is disabled and the transmitter drives a ‘0’ state to the
differential bus. Since the ‘1’ state is never driven to the bus it is assumed that the bus
defaults to this state.

The RS485 mode of operation is specified in the serial MODBUS port configuration with the
flag MODBUS_RS485. The serial driver must be configured to support the RTS control by

activating SUPPORT_HW_FLOW in app_hw_xxxx.h. Processors which do not have RTS

signals integrated into their UARTs configure general purpose outputs to perform the

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 30/78 29.07.2012

function. The pin control is in this case also defined in app_hw_xxxx.h. See appendix B for

configuration examples of all supported processors

.

12. Configuring a MODBUS TCP Slave Device

The application layer MODBUS protocol is the same whether a slave is connected via a
serial connection or Ethernet. This means that the details about the interaction between the
user interface and the MODBUS data is identical to the serial case.

Configuring the user interface for MODBUS TCP slave operation is very similar to configuring
the serial MODBUS user interface:

fnInitialiseMODBUS_port(2,

 &modbus_configuration,

 &modbus_slave_callbacks,

 0);

The MODBUS TCP slave ports follow the MODBUS serial ports (when used). Assuming two
MODBUS serial as in the previous examples the first MODBUS TCP slave has the MODBUS
port number 2.

fnInitialiseMODBUS_port(3,

 &modbus_configuration,

 &modbus_slave_callbacks,

 0);

A second MODBUS TCP slave port, in this case sharing the parameters and call-backs,
foolws as MODBUS TCP slave port 3.

These examples shows two TCP ports being defined whereby their mode and TCP port
numbers are defined in the parameter configuration table

...

{

 MODBUS_TCP_SLAVE_PORT, // MODBUS listener mode - TCP slave port 2

 MODBUS_TCP_SLAVE_PORT, // MODBUS listener mode - TCP slave port 3

},

{

 MODBUS_TCP_PORT, // MODBUS listener port number - standard - TCP slave port 2

 4321, // MODBUS listener port number - user defined - TCP slave port 3

},

{

 (2*60), // MODBUS listener port number - 2 minute TCP idle timeout - TCP slave port 2

 INFINITE_TIMEOUT,// MODBUS listener port number - no connection timeout - TCP slave port 3

},

...

The first TCP port is defined to listen on the standard MODBUS port 502. The second is a
user defined port 4321. The actual number of TCP ports which are foreseen is defined by

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 31/78 29.07.2012

MODBUS_TCP_SERVERS in config.h. For each TCP slave there should be a corresponding

entry in the parameter configuration table.

The example is using the same set of MODBUS data tables but more likely two different sets
would be used for the two port access points.

The number of socket sessions for each port is defined in config.h. For example:

#define MODBUS_SOCKETS_0 5 // number of sessions for first

#define MODBUS_SOCKETS_1 3 // number of sessions for second

The MODBUS TCP slave port 2 (the first TCP slave) can thus have simultaneous
connections from 5 different TCP masters on its TCP port. The MODBUS TCP slave port 3
(the second TCP slave) supports up to 3.

The following diagram shows a MODBUS TCP slave with two ports addresses, each with its
own set of independent data.

INPUT

REGISTER

shared variables

Holding registers

MODBUS

application

protocol

port 502

Discretes

and
Coils

D
ig

it
al

Ethernet

TCP/IP

Discretes
and

Coils

D
ig

it
al

A

D

INPUT

REGISTER

A

D
MODBUS

application

protocol

port 4321

USER APPLICATION

10/100 LAN

Figure 12-1: A typical MODBUS TCP slave showing various inputs and outputs which can be
accessed and controlled via the Ethernet MODBUS connections

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 32/78 29.07.2012

12.1. Multiple TCP Slaves on a Single TCP Socket

A MODBUS TCP slave is generally addressed by the
MODBUS_TCP_NON_SIGNIFICANT_UNIT_IDENTIFIER (0xff or 255). If performing a serial
gateway function, as discussed in the following chapter, all other addresses will be routed to
its corresponding serial MODBUS port (UART).

A MODBUS TCP slave port can also be configured to perform multiple slave functions on a
number of additional slave addresses. This operation is equivalent to multiple serial slaves
on a single interface as described earlier in this document, as is its configuration. When the
option MODBUS_SHARED_TCP_INTERFACES is set to a non-zero value it allows this
many shared TCP slaves to be configured. Each slave will then respond on its own unique
address and can have its own set of parameters and application call-backs.

A matching shared MOBUS slave address has priority over a possible gateway routing
function on this address. Broadcast functions will be handled by the main slave on the non-
significant unit identifier address and then by each shared slave in the order that these were
configured. The broadcast will also be routed to any MODBUS serial or MODBUS TCP
interfaces in accordance with the routing configuration. All slaves share the main TCP socket
configuration.

fnInitialiseMODBUS_port(2, &modbus_configuration_1, &modbus_slave_callbacks_1, 0);

 // initialise MODBUS TCP interface on first TCP port

#if defined MODBUS_SHARED_TCP_INTERFACES > 0

 fnShareMODBUS_port(2, &modbus_configuration_2, &modbus_slave_callbacks_2, 254);

 // additional MODBUS slave sharing port 2 TCP - address 254

 fnShareMODBUS_port(2, 0, &modbus_slave_callbacks_3, 253);

 // additional MODBUS slave sharing port 2 TCP - address 253

#endif

The define MODBUS_SHARED_TCP_INTERFACES is set to the total amount of shared
slaves (the value 2 is adequate for the example) in the system. The shared slaves can be
added to any existing MODBUS TCP slave available and any number can be added as long
as the total does not exceed the MODBUS_SHARED_TCP_INTERFACES limit. As the
example shows, each shared TCP slave can have its own set of parameters and call-backs.

The address given to each shared slave is passed to the fnShareMODBUS_port(). These

values could also be added to the main uParameterSystem parameter block to make them
user configurable. The MODBUS TCP slave main port uses always the slave address 255. In
the example, the shared slaves are then defined addresses 254 and 253. No two slaves on
the MODBUS TCP port should have the same address.

Figure 11-2 illustrates the case according to the example configuration. Although there is
only one TCP socket the MODBUS master can communicate with multiple MODBUS slaves.
Each slave has its own unique call-backs allowing handling MODBUS requests and
commands to each slave by its own application. Slave addresses 255 and 254 have their
own parameter set but the slave address 253 has been configured to have none (but could
have its own, or share with other slaves).

Since the TCP socket supports multiple sessions, several TCP MODBUS masters can
communicate with the TCP slaves. Although not shown in figure 12-2 the MODBUS TCP
slave could also have a gateway function to route to either a dedicated UART or to multiple
UARTs and multiple TCP bridges as described later in the chapter about address-based
gateways.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 33/78 29.07.2012

MODBUS

Slave

Application

255

MODBUS

Slave

Application

2

TCP Slave

253

TCP Slave

255

Parameters

Slave 1

Parameters

Slave 2

MODBUS

Slave

Application

3

TCP MODBUS

MASTER

TCP MODBUS

MASTER

TCP MODBUS

MASTER

Ethernet

TCP Slave

254

TCP Slave

Socket

IP Address
Port number

Figure 12-2: Multiple, shared MODBUS TCP slaves on a single TCP socket

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 34/78 29.07.2012

13. Configuring MODBUS TCP to UART gateways

Whether a listening MODBUS TCP interface is a slave or a gateway, or both, depends on
how it is configured. In the previous section we saw a TCP slave being configured. The
following extends the functionality of the first TCP slave to perform gateway operation on
received MODBUS receptions which do not address the slave itself.

...

 (MODBUS_TCP_SLAVE_PORT | MODBUS_TCP_SERIAL_GATEWAY), // listener mode - TCP slave port 2

...

fnInitialiseMODBUS_port(2,

 &modbus_configuration,

 &modbus_slave_callbacks,

 0);

Note that the gateway’ed MODBUS serial ports MUST be configured as MODBUS_MASTER in

this case! MODBUS master configuration is discussed later in the document.

The following removes the slave functionality of the second TCP port, whereby the
configuration and call-backs are also removed. It is however given a gateway function.

...

 (MODBUS_TCP_SERIAL_GATEWAY), // listener mode - TCP slave port 3

...

fnInitialiseMODBUS_port(3,

 0,

 0,

 0);

All MODBUS TCP frames which are received this MODBUS TCP slave will be passed on to
their corresponding MODBUS serial port.

The first MODBUS TCP slave has a set of slave configuration parameters and so can also
be assessed as a slave device, rather than purely performing the gateway function. The local
MODBUS TCP slave is accessed when the slave address is 0xff (the so called ‘non-
significant unit identifier’). All other MODBUS slave addresses cause the message to be
routed to the defined MODBUS serial interface to address the corresponding slave address
on the serial MODBUS bus. As described in chapter 3, the MODBUS TCP slave port 2 will
pass all gateway’ed frames to the MODBUS serial port 0.

The following diagram shows a MODBUS slave with two TCP ports acting as gateways to
two MODBUS serial connections. The main TCP port (502) also has local MODBUS TCP
slave functionality. As described in chapter 3, the MODBUS TCP slave port 3 will pass all
gateway’ed frames to the MODBUS serial port 1.

Figure 13.1 illustrates the complete functionality.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 35/78 29.07.2012

INPUT

REGISTER

shared variables

Holding registers

Discretes

and
Coils

D
ig

it
al

TCP/IP

A

D

USER APPLICATION

10/100 LAN

2
 x

 A
sy

n
c
h
ro

n
o

u
s

se
ri

al

U
A

R
T

MODBUS

application

protocol

and
gateway

port 502

Ethernet

U
A

R
T

M
O

D
B

U
S

 R
T

U
 /
 A

S
C

II

MODBUS

gateway
port 4321

gateway

gateway

Figure 13-1: A MODBUS TCP slave showing dual gateway functionality, with additional local slave

access on the 502 port. The MODBUS serial ports are both in master mode.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 36/78 29.07.2012

14. Configuring Address-based Gateways

Although the TCP/UART gateway may be the most common gateway function, the µTasker
MODBUS module supports further highly flexible routing capabilities. A few such
configurations are described here and can be used as base for various other combinations
as required.

Section 14.3 shows in addition how it is possible to modify the slave address during the
gateway process.

14.1. Serial to Serial MODBUS Bridge

Master

UART

UART1 - MODBUS

to UART slave(s)

Serial MODBUS

MASTER

MODBUS

Application

Serial Slave
gateway

Slave

Slave

Slave

Slave

UART0

Figure 14-1: A MODBUS Serial Bridge

Figure 14-1 shows an application with two serial interfaces. The MODBUS application has
defined a MODBUS serial master on UART1 which it can use to poll slave devices on the
bus connected to that interface. This represents a normal MODBUS master function.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 37/78 29.07.2012

It has however additionally defined a MODBUS serial slave gateway on UART0. The
purpose of this gateway is to allow an external MODBUS master to also access the
MODBUS bus on UART1 for its own use. This results in there being essentially two masters
controlling the bus on UART1. The two UARTs can however have different configurations
(speed, mode, etc.). In this example the external MODBUS master is connected in a point-to-
point fashion and could use RS232, whereas RS485 will usually be used on the MODBUS
bus on UART1.

The serial slave gateway can either perform the gateway to all slave addresses or only to
defined addresses. In addition it can have its own slave address for local access to its own
parameters.

Before showing the way that this is configured, the following figure illustrates how the bridge
can also operate as an address aperture to a MODBUS bus controlled by the external
MODBUS master. Note that the local MODBUS application doesn’t have access to the
MODBUS bus of the external MODBUS master.

Master

UART

UART1 - MODBUS

to UART slave(s)

Serial MODBUS

MASTER

MODBUS

Application

Serial Slave
gateway 7

Slave 3

Slave 4

Slave 5

Slave 6

UART0

Slave 1

Slave 2

Slave 3

Slave 4
5, 6

Figure 14-2: A MODBUS Serial Bridge acting as an address aperture

In figure 14-2 the serial slave gateway has been configured with its own slave address (7). It
ignores slave addresses below 5 so that the external MODBUS master can access the
devices on its local bus. Any higher addresses will be gateway’ed to UART1, meaning that
the external MODBUS master also has access to remote slaves on the second bus through
the defined address aperture.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 38/78 29.07.2012

The access addresses can be summarised as:

• 1..4 Local bus

• 5..6 Remote bus on UART1

• 7 Serial gateway slave address

The address range not covered in the example above can be configuration to allow further
slave addresses to be routed to different UARTs or to MODBUS TCP connections, making it
extremely flexible in operation. Since these are not required in the example, further slave
addresses can also be configured to be ignored.

The following show the complete configuration for the case as illustrated in figure 14-2:

static const MODBUS_PARS cMODBUS_default = {

 MODBUS_PAR_BLOCK_VERSION,

 {

 7, // slave address - serial port 0

 0, // master - serial port 1

 },

 {

 (CHAR_8 + RS232_EVEN_PARITY + ONE_STOP + CHAR_MODE), // configuration - serial port 0

 (CHAR_8 + RS232_EVEN_PARITY + ONE_STOP + CHAR_MODE), // configuration - serial port 1

 },

 {

 SERIAL_BAUD_19200, // baud rate - serial port 0

 SERIAL_BAUD_19200, // baud rate - serial port 1

 },

 {

 (MODBUS_MODE_ASCII | MODBUS_SERIAL_SLAVE | MODBUS_SERIAL_GATEWAY | MODBUS_RS485_NEGATIVE),

 // mode - serial port 0

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_POSITIVE), // mode - serial port 1

 },

 {

 (DELAY_LIMIT)(1*SEC), // max. inter-character delay in ASCII mode - serial port 0

 (DELAY_LIMIT)(*SEC), // max. inter-character delay in ASCII mode - serial port 1

 },

 {

 0x0a, // ASCII mode line feed character - serial port 0

 0x0a, // ASCII mode line feed character - serial port 1

 },

 {

 (DELAY_LIMIT)(0*SEC), // MODBUS master timeout - serial port 0

 (DELAY_LIMIT)(1.5*SEC), // MODBUS master timeout - serial port 1

 },

 { 'u', 'T', 'a', 's', 'k', 'e', 'r', '-', 'M', 'O', 'D', 'B', 'U', 'S', '-',

 's', 'l','a','v','e' },

};

When the MODBUS ports are initialised the slave gateway port is passed parameters so that
it can perform its local slave function (on address 7). It is also passed a master call back
function which will be responsible for the gateway operation. This allows the gateway to first
look at the frame content if it desires and change routing decisions on a request/command
basis if necessary.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 39/78 29.07.2012

The master port initialisation is passed its own master call back function which is used for
handling responses from its own requests and command to external MODBUS slaves.

 fnInitialiseMODBUS_port(0,

 &modbus_configuration,

 &modbus_slave_callbacks,

 fnMODBUSgateway); // initialise MODBUS serial interface - port 0

 fnInitialiseMODBUS_port(1,

 0,

 0,

 fnMODBUSmaster); // initialise MODBUS serial interface - port 1

The gateway call back is responsible for passing on requests and commands received from
the external master to the defined destination. It can thus also count messages or even
analyse their content and chance routing decisions as desired. Generally it will however
simply pass the messages on to the internal µTasker MODBUS router.

static int fnMODBUSgateway (int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 if (iType == SERIAL_ROUTE_FROM_SLAVE) {

 return fnMODBUS_route(iType, modbus_rx_function, (MODBUS_ROUTE *)routing_table);

 }

 return 0;

}

Routing is based on slave addresses and controlled by a routing table which the gateway
call- back passes. The routing strategy can thus also be changed during operation if the table
is modified, or a different one is passed.

static const MODBUS_ROUTE routing_table[] = {

 {0xff, 0x04}, // ignore addresses up to 4

 {1, 0x06}, // route addresses 5 to 6 to MODBUS port 1

 {0xff, 0xff} // ignore all other addresses

};// port route, last address in block

The routing table is very simple. It states to which MODBUS port the slave addresses
starting from the end of the last block up to the end of the entry block are to be routed to. A
value of 0xff as port means that it is to be ignored. The block address range starts at 0 for the
first entry and ends when 0xff is reached.

The gateway call-back is only used to handle the routing to the MODBUS master. The
response from the remote MODBUS slave will automatically be routed back to the orignal
source.

If the serial gateway slave were to have no slave functionality of its own (address 7) its
configuration simply changes to

...

 (MODBUS_MODE_ASCII /*| MODBUS_SERIAL_SLAVE*/ | MODBUS_SERIAL_GATEWAY | MODBUS_RS485_NEGATIVE)

...

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 40/78 29.07.2012

If it should route all messages it receives from the external MODBUS master, its routing table
becomes simply

static const MODBUS_ROUTE routing_table[] = {

 {1, 0xff}, // route all addresses to MODBUS port 1

};// port route, last address in block

Note that the user can also cause particular messages to be routed to other MODBUS
master interfaces by returning (MODBUS_APP_GATEWAY_FUNCTION – MODBUS port

number to be routed to). For example

return (MODBUS_APP_GATEWAY_FUNCTION – 2); // route to MODBUS port 2

This allows additional control in special cases which may not be handled fully by using the
routing table alone as show in the following example. The standard routing table is used for
all none-matching criteria but some special cases are determined in the call-back:

static int fnMODBUSgateway (int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 if (iType == SERIAL_ROUTE_FROM_SLAVE) {

 switch (modbus_rx_function->ucFunctionCode) {

 case MODBUS_WRITE_SINGLE_COIL:

 return (MODBUS_APP_GATEWAY_FUNCTION - 0); // route this function code to 0

 case MODBUS_WRITE_MULTIPLE_COILS:

 return(MODBUS_APP_GATEWAY_FUNCTION - 1); // route this function code to 1

 }

 return fnMODBUS_route(iType, modbus_rx_function, (MODBUS_ROUTE *)routing_table);

 }

 return 0;

}

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 41/78 29.07.2012

14.2. TCP to Serial MODBUS Bridge

TCP MODBUS

MASTER

TCP Slave
gateway

Master

UART

UART1 - MODBUS

to UART slave(s)

MODBUS

Application

Slave

Slave

Slave

Slave

TCP MODBUS

MASTER

TCP MODBUS

MASTER

Ethernet

Figure 14-3: A MODBUS TCP/Serial Bridge

Figure 14-3 illustrates a MODBUS TCP to MODBUS serial bridge. The TCP slave gateway is
a listener on either the MODBUS port 502 or any other user-defined port. Remote MODBUS
TCP masters can establish TCP connections with the TCP slave gateway in order to then
communicate with remote slaves on the UART1 connection. The number of remote TCP
masters supported at the same time depends on the number of sessions configured for the
TCP slave gateway.

As discussed in section 3.1 it is also possible to configure this type of gateway routing to a
single fixed serial MODBUS port without using any slave address based routing.

Figure 14-4 thus shows a more advanced configuration where two serial MODBUS ports are
available and the remote MODBUS TCP masters can access both serial connections based
on slave addressing.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 42/78 29.07.2012

TCP MODBUS

MASTER

TCP Slave
gateway

0xff

Master

UART

UART1 - MODBUS

to UART slave(s)

MODBUS

Application

Slave 1

Slave 2

Slave 3

TCP MODBUS

MASTER

TCP MODBUS

MASTER

Ethernet

Master

UART

UART0 - MODBUS

to UART slave(s)

Slave 4

Slave 5

Slave 6

Slave 7

Slave 8

Figure 14-4: A MODBUS TCP/Serial Bridge with two serial MODBUS buses

It is now possible for a remote MODBUS TCP master to access both remote MODBUS serial
buses on UARTs 0 and 1. As in the case of the serial to serial gateway case all routing is
based on the slave address. The TCP MODBUS master doesn’t need to know on which
UART the destination device is connected and can, in this example, send requests or
commands to any slave address from 1 to 8. Messages for slaves 1 to 4 are routed to
UART1 and messages to slaves 5 to 8 are routed to UART0.

The TCP slave gateway can also have its own slave address, which is always 0xff (the non-
significant unit identifier address). A TCP slave gateway with the flags
MODBUS_TCP_SERIAL_GATEWAY and MODBUS_TCP_SLAVE_PORT will both route messages

and respond to the non-significant unit identifier address, whereas a TCP slave gateway with
only the flag MODBUS_TCP_SERIAL_GATEWAY will route all message and ignore the 0xff

address.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 43/78 29.07.2012

Broadcasts received by the MODBUS TCP slave will be passed on to both MODBUS serial
ports.

The configuration for the MODBUS TCP/Serial bridge as illustrated in figure 14-4 is shown
below:

static const MODBUS_PARS cMODBUS_default = {

 MODBUS_PAR_BLOCK_VERSION,

 {

 0, // slave address - serial port 0

 1, // slave address - serial port 1

 },

 {

 (CHAR_8 + NO_PARITY + TWO_STOP + CHAR_MODE), // serial port 0

 (CHAR_7 + EVEN_PARITY + ONE_STOP + CHAR_MODE), // serial port 1

 },

 {

 SERIAL_BAUD_115200, // baud rate of serial port 0

 SERIAL_BAUD_19200, // baud rate of serial port 1

 },

 {

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_NEGATIVE),// RTU mode serial 0

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_POSITIVE), // ASCII serial 1

 },

 {

 (DELAY_LIMIT)(1*SEC), // inter-character ASCII mode - serial port 0

 (DELAY_LIMIT)(0.2*SEC), // inter-character ASCII mode - serial port 1

 },

 {

 0x0a, // ASCII mode line feed character - serial port 0

 0x0a, // ASCII mode line feed character - serial port 1

 },

 {

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master timeout - serial port 0

 (DELAY_LIMIT)(0.5*SEC), // MODBUS master timeout - serial port 1

 },

 { 'u', 'T', 'a', 's', 'k', 'e', 'r', '-', 'M', 'O', 'D', 'B', 'U', 'S', '-',

 's', 'l','a','v','e' },

 {

 (MODBUS_TCP_SERIAL_GATEWAY | MODBUS_TCP_SLAVE_PORT), // MODBUS TCP slave port 2

 },

 {

 MODBUS_TCP_PORT, // MODBUS listener port number- TCP slave port 2

 },

 {

 (5*60), // TCP idle time out

 },

 #endif

};

The MODBUS ports are initialised with:

 fnInitialiseMODBUS_port(0,

 0,

 0,

 fnMODBUSmaster); // initialise MODBUS serial interface - port 0

 fnInitialiseMODBUS_port(1,

 0,

 0,

 fnMODBUSmaster); // initialise MODBUS serial interface - port 1

 fnInitialiseMODBUS_port(2,

 &modbus_configuration,

 &modbus_slave_callbacks,

 fnMODBUSgateway); // initialise MODBUS TCP slave gateway

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 44/78 29.07.2012

The gateway call back associated with the MODBUS TCP slave gateway is defined as
follows:

static int fnMODBUSgateway(int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 switch (iType) {

 case TCP_ROUTE_FROM_SLAVE: // TCP frame from MODBUS TCP slave gateway has been received

 return fnMODBUS_route(iType, modbus_rx_function, (MODBUS_ROUTE *)routing_table_2);

 // route the frame to a local MODBUS master

 }

}

The routing table is defined to route the address ranges to the appropriate MODBUS serial
ports:

static const MODBUS_ROUTE routing_table_2[] = {

 {1, 0x04}, // all slave addresses up to 0x4 are routed to MODBUS port 1 (UART1)

 {0, 0x08}, // following slave addresses up to 0x8 are routed to MODBUS port 0 (UART0)

 {0xff, 0xff} // any further addresses are ignored

};

14.3. Mapping Slave Addresses in a Gateway Transfer

During the gateway routing process two slave addresses is used. The second address is set
by the MODBUS module per default to be the same as the slave address in the received
message. If nothing else if performed it means that message received for slave address 9,
for example, will be passed on to the gateway for the remote slave address 9; the reverse
routed response will also be from the slave address 9.

In some situations is may be necessary to be change the slave address to which the
message is sent to on the gateway’d MODBUS port. For example, a message received for
slave address 9 is passed on to another MODBUS port but sent to the remote slave address
23. The response returned from the remote slave with address 23 is routed back to the
requesting master with the slave address information 9.

The following code, added to any MODBUS application call-back, shows how this is
achieved:

 if (modbus_rx_function->ucSourceAddress == 9) { // if message to slave address 9

 modbus_rx_function->ucMappedAddress = 23; // map the slave address to 23

 return (MODBUS_APP_GATEWAY_FUNCTION - 0); // gateway this to MODBUS port 0

 }

By manipulating the mapped address (modbus_rx_function->ucMappedAddress) the

slave address to which the received massage is sent to on the gateway’d MODBUS port is
modified. When the response is received from the MODBUS slave 23 on that MODBUS port
it will automatically routed back to the originating MODBUS port with its original slave
address.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 45/78 29.07.2012

15. Configuring a MODBUS master

Whether a MODBUS port has master functionality or slave functionality is defined when it is
initialised.

The following shows a MODBUS serial port being configured and initialised for master mode:

....

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_POSITIVE),

 // RTU mode as master - serial port 0

....

 (DELAY_LIMIT)(2*SEC), // MODBUS master timeout for a response from slave - serial port 0

....

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master broadcast timeout - serial port 0

....

fnInitialiseMODBUS_port(0,

 0, 0, // no slave parameters

 fnMODBUSmaster); // initialise MODBUS serial interface - port 0

This MODBUS serial port has been initialised as a MODBUS master and passed a master
call back routine as final parameter. The slave configuration parameters have been set to
zero since they are not used.

The maximum time waited for a response from a slave is entered as well as a timeout for
transmission of broadcast messages.

• If an addressed slave doesn’t respond within the timeout period it is considered that it
will no longer respond and the master can continue with subsequent transmissions if
it wants. The master call-back will receive the event MODBUS_NO_SLAVE_RESPONSE

and can decide whether to attempt a repeat of a message or to declare the slave as
no longer active.

• A broadcast message will never receive a response but the broadcast timeout allows
slaves time to process the broadcast before the master continues with further
transmissions.

The following shows a MODBUS TCP port being configured and initialised for master mode:

....

 {192, 168, 0, 3}, // IP address of TCP slave - TCP master port 4

....

 MODBUS_TCP_PORT, // TCP port number of TCP master port 4

....

 (2*60), // MODBUS master - 2 minute TCP idle timeout - TCP master port 4

....

 (DELAY_LIMIT)(2*SEC), // maximum wait for a response from a slave - TCP master port 4

....

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master broadcast timeout - TCP master port 4

....

fnInitialiseMODBUS_port(4,

 0, 0, // no slave parameters

 fnMODBUSmaster); // initialise MODBUS TCP interface - port 4

See the example MODBUS application app_modbus.c for complete examples of slave and

master configurations.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 46/78 29.07.2012

15.1. MODBUS Master Transmission

A MODBUS master must transmit commands and requests to MODBUS slaves. These can
be destined to slaves connected to a MODBUS serial port or a remove MODBUS TCP slave,
or slaves connected to a remove MODBUS gateway.

When a MODBUS master needs to send a command or request it can do so using the
function:

 extern int fnMODBUS_Master_send(

 unsigned char ucInterface, // MODBUS port number

 unsigned char ucSlave, // slave address

 unsigned short usFunction, // public function

 void *details); // data content

When sending public functions the application code doesn’t need to be fully aware of the
data format but instead needs only to pass details about the access range as illustrated in
the following example.

Read a quantity of coils

 static MODBUS_READ_QUANTITY read_coils = { 57, 11};

 // starting at coil address 57 read 11 coils

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_READ_COILS,

 (void *)&read_coils);

The MODBUS master will transmit a MODBUS_READ_COILS request whereby the

information passed in the structure read_coils [the starting coil address and the

quantity of coils] is the only information that the application has to specify for the
corresponding message to be constructed.

The master interface can be a MODBUS serial port or a MODBUS TCP port. The
transmission over the corresponding physical interface, in the correct data format (eg.
ASCII or RTU when transmitting over a serial MODBUS port) is automatically performed
by the MODBUS master port.

See appendix A for a complete list of supported public MODBUS functions.

In order for the MODBUS master to send content not conforming to the supported public
functions it can pass the data to be sent in transparent form using a structure of type
MODBUS_DATA_CONTENT. The following example shows a user defined function code 66
being used, whereby the data content is transparent to the MODBUS master transmission
and is sent as raw data content.

 unsigned char ucData[] = {1,2,3,4,5,6,7,8,9,10}; // RAW data content

 MODBUS_DATA_CONTENT frame_content = { ucData, sizeof(ucData)}; // define data content

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, 66, &frame_content); // send to MODBUS port 0

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 47/78 29.07.2012

When a MODBUS master sends a command or request the routine
fnMODBUS_Master_send() returns either 0 when the transmission was successful or else
one the following none-zero values:

• MODBUS_TX_MESSAGE_QUEUED - The master is presently waiting for the

response from a slave but the new message was successfully queued and will be
sent as soon as possible.

• MODBUS_TX_MESSAGE_LOST_NO_QUEUE_SPACE - The master is presently

waiting for the response from a slave. The new message couldn’t be queued
since there is no more queue space.

• MODBUS_TX_MESSAGE_LOST_QUEUE_REQUIRED - The master is presently

waiting for the response from a slave. Since no queues are configured for use in
this case the message was lost. The master should usually never attempts to
send in this case since queue operation is not foreseen. See chapter 16 for
details about MODBUS queues and when they are useful.

15.2. MODBUS Master Call-Back Events

When a response has been received from a slave the master is informed by the event
MODBUS_SLAVE_RESPONSE. In this case the master can check whether it is an exception by

looking at the most significant bit of the function code.

The following example shows the identification of exceptions and several function code
responses.

static int fnMODBUSmaster(int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 switch (iType) {

 case MODBUS_SLAVE_RESPONSE:

 if (modbus_rx_function->ucFunctionCode & 0x80) {

 fnDebugMsg("Exception: ");

 }

 switch (modbus_rx_function->ucFunctionCode & 0x7f) {

 case MODBUS_READ_COILS: // function codes

 fnDebugMsg("Coils\r\n");

 break;

 case MODBUS_READ_DISCRETE_INPUTS:

 fnDebugMsg("Inputs\r\n");

 break;

 case MODBUS_READ_HOLDING_REGISTERS:

 fnDebugMsg("Hol Regs\r\n");

 break;

 case MODBUS_READ_INPUT_REGISTERS:

 fnDebugMsg("Input Regs\r\n");

 break;

 }

 break;

 }

}

When a slave doesn’t respond to a request the event MODBUS_NO_SLAVE_RESPONSE will be

received after the timeout has expired. The master can decide whether to try again or
declare the slave as no longer present.

After a broadcast has been sent (slave address 0 – or BROADCAST_MODBUS_ADDRESS) the

event MODBUS_BROADCAST_TIMEOUT will be received after the broadcast timeout has

expired. The master application can use this as an event to continue with slave polling.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 48/78 29.07.2012

A MODBUS TCP master will receive further events which can be used to monitor the TCP
connection or check its reliability.

• MODBUS_CONNECTION_ESTABLISHED - A TCP connection has been established

with the remote slave.

• MODBUS_CONNECTION_ABORTED – A TCP connection attempt has been rejected.

• MODBUS_CONNECTION_CLOSED – A TCP connection has been closed.

• MODBUS_TCP_REPETITION – A retransmission was performed due to the slave not

acknowledging message reception. Note that this is failure of acknowledgement of
the TCP frame reception and not a MODBUS slave timeout which can still occur
when the TCP frame was correctly received at the slave TCP port.
The application doesn’t need to repeat transmission due to this event since the
MODBUS module automatically performs retransmission of lost message content.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 49/78 29.07.2012

16. MODBUS Queues

Message queues are optional but may be useful at MODBUS master interfaces and are
recommended when TCP or gateways are in use.

The simplest example of a queue is to consider a simple MODBUS serial master controlled
by a local user interface. In normal situations the user interface will dictate that the master
interface sends a command or request to a slave on the MODBUS interface. When this
command or request is sent, a monitoring timer is started by the MODBUS master (the
timeout value is defined by the configuration parameter serial_master_timeout or

tcp_master_timeout). The transaction is complete, and further can be started, when

either the slave responds (this could also be an exception response if there is an error in the
requested function or its values) or when the master monitor times out. In most simple
situations there are no requirements for a queue at the master interface since the user
interface will wait for the first transaction to terminate before following ones are attempted.

If however the master interface is being shared with a gateway (either from a TCP gateway
or a serial gateway) the user interface isn’t aware of whether the master is presently
occupied with a transaction originating from the gateway source. Alternatively, a transaction
from a gateway source can arrive at any time, also when a local master transaction is in
progress. In these circumstances a queue is necessary in order to avoid a second
transaction attempt from being rejected.

The amount of data that can be queued is configurable per interface. The number of
individual messages which can be queued depends in turn on the total amount of queue size
and the length of individual messages.

It is also possible to define a queue for use by a simple master. In this case the user
interface can send multiple commands and requests to the master without waiting for each
individual transaction to complete. The master will then process each of the waiting
messages in the same order that they were queued in (FIFO). The master will also receive
responses from slaves in that same order.

All queued messages, whether arriving from a gateway or the local master, are processed in
the same order as they were received and the slave response is then returned to the
corresponding transmission source.

Queues are enabled by using the define MODBUS_GATE_WAY_QUEUE. When queues are in

operation, the size of each serial interface queue is defined in the configuration block using
additional parameters as shown below:

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 50/78 29.07.2012

 {

 (MODBUS_MODE_RTU | MODBUS_SERIAL_MASTER | MODBUS_RS485_NEGATIVE),

 // default to RTU mode as master - serial port 0

 (MODBUS_MODE_RTU | MODBUS_SERIAL_SLAVE | MODBUS_RS485_POSITIVE),

 // default to RTU mode as slave - serial port 1

 },

 #ifdef MODBUS_GATE_WAY_QUEUE

 {

 1024, // buffer size for queuing waiting messages on MODBUS serial port 0

 0, // no buffer on MODBUS serial port 1 since it is a slave

 },

 #endif

Similarly, there is also an additional queue size for each MODBUS TCP port:

#ifdef MODBUS_TCP

 #ifdef MODBUS_TCP_SERVERS

 {

 (MODBUS_TCP_SERIAL_GATEWAY | MODBUS_TCP_SLAVE_PORT), // TCP slave port 2

 MODBUS_TCP_SLAVE_PORT, // TCP slave port 3

 },

 {

 MODBUS_TCP_PORT, // port number - TCP slave port 2

 4321, // port number - TCP slave port 3

 },

 {

 (2*60), // MODBUS listener port number - 2 minute TCP idle timeout - TCP slave port 2

 INFINITE_TIMEOUT, // no TCP connection timeout - TCP slave port 3

 },

 #endif

 #if MODBUS_TCP_MASTERS > 0

 {

 {192, 168, 0, 10}, // IP address of TCP slave - TCP master port 4

 {192, 168, 0, 12}, // IP address of TCP slave - TCP master port 5

 },

 {

 MODBUS_TCP_PORT, // port number - TCP master port 4

 4321, // port number - TCP master port 5

 },

....

 {

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master broadcast timeout - TCP master port 4

 (DELAY_LIMIT)(0.2*SEC), // MODBUS master broadcast timeout - TCP master port 5

 },

 #endif

 #ifdef MODBUS_GATE_WAY_QUEUE

 {

 512, // buffer size for queuing waiting messages on MODBUS tcp port 2

 256, // buffer size for queuing waiting messages on MODBUS tcp port 3

 128, // buffer size for queuing waiting messages on MODBUS tcp port 4

 64, // buffer size for queuing waiting messages on MODBUS tcp port 5

 },

 #endif

#endif

The MODBUS message queues are realised as µTasker queues (as used by inter-task
communication). In order for the queues to allow writing, the define
SUPPORT_INPUT_QUEUE_WRITE must be active. Also a queue must be reserved in the

queue pool for each interface. This is performed as in the example configuration in
config.h

 #define NUMBER_MODBUS_QUEUES (MODBUS_SERIAL_INTERFACES + MODBUS_TCP_SERVERS + MODBUS_TCP_MASTERS)

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 51/78 29.07.2012

The queue operation is usually transparent to the user. The user must however ensure that
the queue sizes are adequate for the intended environment. For each queued message there
is a small overhead as follows:

• Messages originating from an internal master or from a serial gateway: +3 bytes
header.

• Messages originating from a TCP gateways or queued for transmission over a TCP
socket: + 9 bytes plus the size of a pointer to the TCP socket session (generally 4
bytes), giving +13 bytes header.

If there is no space available to save a new message to a queue it will be discarded,
generally resulting in the master having to retry later. A MODBUS master transmission
attempt by a local application will receive the return value
MODBUS_TX_MESSAGE_LOST_NO_QUEUE_SPACE if a message was discarded, otherwise it

will receive either MODBUS_TX_MESSAGE_QUEUED or 0, when it was immediately sent.

Should a message be received from a TCP gateway which couldn’t be queued it will be
discarded locally, but the TCP socket will also not acknowledge its TCP frame reception.
This will generally result in a number of repetitions at the TCP level, after which it may be
possible to accept it. In some MODBUS TCP based systems this enables the TCP
connection itself to operate as a form of queue and may even be adequate to treat infrequent
gateway collisions if a minimum of memory consumption is of highest priority.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 52/78 29.07.2012

17. Delayed Responses

The fnPreFunction() was discusses in section 7.1. This is called during the processing of

a MODBUS request by a slave interface. It is called before the slave returns a response
containing the requested information and allows the user interface to update such data
content as it sees fit.

In some situations the user interface may not be capable of updating the information without
first having to request it from a remote device, such as a second processor connected via a
slow serial interface or even a further isolated MODBUS master interface. The user interface
is given the possibility to delay the response by returning the appropriate code. In this case
the application can start the request of the remote information and remember the
modbus_rx_function->usReference value associated with the MODBUS request

before return the value MODBUS_APP_DELAYED_RESPONSE.

The slave will in turn save the request until one of the following events occurs:

• A following request is received from the MODBUS master on the MODBUS slave
port. This signifies that the master timed out as the response was not received within
its timeout period. This causes the original delayed response to be deleted.

• The user interface calls
fnMODBUS_delayed_response(usDelayedReference);

where the reference number corresponds to the one remembered when initiating the
update of local data. This means that the user interface managed to obtain and
update the local data before the master timed out (this is a general requirement for
any system based on this technique) and it causes the original response to be
continued at the place that it was interrupted. The reference number is no longer valid
once the response processing has terminated.

When the MODBUS slave interface saves the MODBUS request, waiting for the user
interface to prepare data, it saves just the relevant information required to complete the
processing. Requests tend to be constructed from short MODBUS frames and so usually a
small size can be defined for the data (the length doesn’t need to include the slave address
nor the function code). In config.h the define MAX_QUEUED_REQUEST_LENGTH sets the

maximum request data length, which can be increased or reduced depending on knowledge
of request utilisation in the system.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 53/78 29.07.2012

The following example illustrates a coil response in a certain range requiring the application
to first request remote information (requiring a delay before becoming available).

static int fnMODBUSPreFunction(int iType, MODBUS_RX_FUNCTION *modbus_rx_function)

{

 unsigned short usAddress = modbus_rx_function->usElementAddress;

 switch (iType) {

 case PREPARE_COILS: // coils are being read - update table values if necessary

 usAddress -= COILS_START; // reference to start of coil region

 if ((usAddress + modbus_rx_function ->usLength) > 10) &&

 (usAddress < 20)) { // special coil region

 fnRequestRemote(modbus_rx_function->usReference);

 // start request and save reference

 return MODBUS_APP_DELAYED_RESPONSE; // delay response

 }

 break;

 }

 return 0;

}

First a remote request is started with a reference to the request number. This function could
for example save the request number and start a serial request to a remote device.
When the data has been successfully received it can be updated in the local coil table and
the response completed as shown in the following example:

static void fnRemoteDataReceived(unsigned char *ucData, unsigned char ucLength,

 unsigned short usDelayedReference)

{

 uMemcpy(&coils[10], ucData, ucLength); // update the special coils values

 fnMODBUS_delayed_response(usDelayedReference); // complete MODBUS response

}

This function is called when the new data has been received so that the coil values can be
updated and then the MODBUS response can be completed.

In many polling based MODBUS systems the delayed response technique will not be
required since a small delay in response content value can be tolerated. If the remote device
updating the local data is being polled at the same rate as the MODBUS polling, the largest
latency will be the delay between two polling requests. In systems where such information is
only requested when needed (neither the remote device is being polled by the application nor
the MODBUS slave being polled on the MODBUS bus) the delayed response technique
enables optimum efficiency to be achieved.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 54/78 29.07.2012

18. USB Slave Support

In some cases it may be useful to be able to connect an external MODBUS serial master to a
slave directly via a USB connection, rather than RS232 or RS485. This may be the case
when there is only a single slave or when the slave is performing a gateway function to
further MODBUS busses.

The MODBUS master SW is generally running on a PC and so can operate using a virtual
COM port over US rather than a standard COM port. As long as the target hardware is
capable of supporting the USB device CDC class it can be connected directly to the USB
host connection.

The µTasker project includes a USB device CDC example which can be simply configured
for use together with a MODBUS slave application. In order to use this, the USB interface
must be enabled (USB_INTERFACE in config.h) and the USB MODBUS slave support

activated (MODBUS_USB_SLAVE in config.h). These defines also configure the µTasker

demo project to operate in this configuration by making the following small modifications:

- The MODBUS initialisation fnInitModbus() is not performed by application.c

but by the USB task once the USB interface has been configured for CDC
(Communication Device Class, which is equivalent to a UART over USB) use.

- When the USB interface is opened, its owner task is set to the MODBUS task and the
USB task doesn’t handle any reception data.

- USBPortID_comms, the USB port handle, is exported so that it can be used by the

MODBUS module.

The use of a USB interface instead of a physical UART is defined in app_hw_xxxx.h by

defining the particular MODBUS serial port to a value higher than the available processor
UARTs:

 #ifdef MODBUS_USB_SLAVE

 #define MODBUS_UART_1 3 // set higher than UART so that USB is used instead

 #else

 #define MODBUS_UART_1 1

 #endif

This shows that MODBUS port 1 will use UART 1 when its define is a valid UART number
(eg. 0,1 or 2 for a processor with 3 UARTs). A value of 3 (or higher) causes the USB
interface to be used instead.

The MODBUS module handles all further details of USB operation and the user MODBUS
interface remains fully compatible to a UART serial based one.

USB slave mode is however only possible when the MODBUS serial mode is set to ASCII
mode (not RTU). This is because the RTU timing rules are not relevant to the packet oriented
USB operation and so inter-space character timing cannot be used to recognise MODBUS
framing. The use of ASCII has no disadvantages when operating over USB since the higher
USB speed compensates for the fact that the data is transmitted in ASCII format rather than
directly in binary; the fact that a weaker check sum is used for frame integrity checking is
also compensated for by USB’s in-build redundancy checks.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 55/78 29.07.2012

19. TCP Connection Details – Masters and Gateways

MODBUS TCP masters are configured with the IP and address of the MODBUS TCP slave
that they are to communicate with. The TCP connection to this slave does not exist when the
module is started and the connection attempt is not made until it is needed; it is automatically
established the first time that the master sends a request or command to the slave.

A MODBUS TCP master being used to gateway to is another type of MODBUS TCP master
and obeys the same operation rules in that it automatically attempts to establish a TCP
connection to its TCP slave when data is to be sent – in this case as the result of it being
transferred to it from a local MODBUS slave acting as gateway.

A TCP connection may break down if the connection path is interrupted or the slave is no
longer active (eg. powered down). If the TCP socket has an idle timeout, an idle connection
will also be automatically closed after this interval with no activity.

After closing a TCP connection due to an idle timeout or due to an error the MODBUS TCP
master will automatically attempt to re-establish a connection as soon as further data is to be
sent.

This connection establishment is illustrated in figure 19-1 where a MODBUS TCP gateway is
shown, which is performing a gateway function between two TCP connections – the remote
MODBUS TCP master is sending a query once every second.

After a short time the remote MODBUS TCP slave is stopped and the TCP connection
breaks down; this is shown in figure 19-2. Later still the remote MODBUS TCP slave is
started again so that the TCP connection is re-established and the normal functional takes
place again; this is shown in figure 19.3.

After each figure a more detailed explanation of what is taking place is given.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 56/78 29.07.2012

SYN

SYN + ACK

ACK

TCP

connection

SYN

SYN + ACK

ACK
TCP

connection

Query 0

ACK

Query 0

Response 0 + ACK

Response 0

ACK

Query 1

ACK
Query 1

Response 1 + ACK

Response 1

ACK

Query 2

ACK
Query 2

Response 2 + ACK

Response 2

ACK

REMOTE MODBUS
TCP MASTER

192.168.0.3 Port 502

MODBUS
TCP Gateway listener

192.168.0.4 Port 502

MODBUS
TCP Master

192.168.0.4 Port 502

REMOTE MODBUS
TCP Slave

192.168.0.5 Port 502

+1s

+1s

ACK

ACK

ACK

Figure 19-1: A MODBUS TCP master connecting to a remote slave via a gateway and polling once a
second

Figure 19-1 shows that the remote master polls the remote slave once a second. The first
query causes the establishment of a TCP connection with the gateway listener at IP address
192.168.0.4, which subsequently automatically connects with the remote slave at IP address
192.168.0.5.

Following the successful connections the query (transaction 0) is also passed on and the
slave’s response routed back to the source at IP address 192.168.0.3.

The process continues with the master polling the remote slave once a second. After the
connections were established automatically on the first query the connections remain
established and only data and TCP acks are transmitted thereafter.

Note that no ARP frames are shown in figure 19-1, whereby they may be present when
resolving the IP/MAC addresses within the local network.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 57/78 29.07.2012

Query 3

ACK Query 3

REMOTE MODBUS
TCP MASTER

192.168.0.3 Port 502

MODBUS
TCP Gateway listener

192.168.0.4 Port 502

MODBUS
TCP Master

192.168.0.4 Port 502

REMOTE MODBUS
TCP Slave

192.168.0.5 Port 502

+1s

Query 4

ACK

+1s

Query 5

ACK

+1s

Query 6

ACK

Query 7

+1s

Query 7 Repeat

Query 3 Repeat

Query 3 Repeat

RST
Connection

Aborted

Queue deleted

4

4

5

4

5

6

4

5

6

Figure 19-2: The remote slave connection breaking down due to no slave acknowledgements

Figure 19-2 shows what happens when the remote slave is powered down. The gateway
listener initially still accepts queries from the remote MODBUS master but they can’t be sent
to the remote slave as it is presently not answering. Query 3 is repeated a few times until the
connection fails and a TCP RST is transmitted as the connection is aborted. (The TCP
repetition times and attempts are only illustrational, whereby they are generally 4s with 6
repeats before the abort finally takes place).

The MODBUS gateway initially accepts and acknowledges all queries from the remote
master and puts them to the gateway master’s queue. If the slave were to acknowledge one
of the outstanding queries the queue content could subsequently be transmitted (each entry
as an individual MODBUS query expecting its own response) and thus short intervals of
broken connection can be bridged. The example shows the master’s queue becoming full
and after that no more queries being accepted and no TCP ACK being returned to the
remote master. The remote master’s TCP layer will in this case start performing TCP
transmissions as the local TCP master is presently doing.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 58/78 29.07.2012

When the connection to the remote TCP finally aborts it is clear that the interruption is of a
serious nature and so the internal queue is also flushed, meaning that all presently waiting
queries will be lost and the remote MODBUS master will need to handle this situation at its
MODBUS application layer. Note that it is in fact the polling master will probably already
know that there is a problem with the remote slave since it generally expects an immediate
response to each query sent. In the case of TCP gateways there could however be multiple
remote MODBUS masters polling the same slave and so several queries still be queued.

REMOTE MODBUS
TCP MASTER

192.168.0.3 Port 502

MODBUS
TCP Gateway listener

192.168.0.4 Port 502

MODBUS
TCP Master

192.168.0.4 Port 502

REMOTE MODBUS
TCP Slave

192.168.0.5 Port 502

+1s

Query 8

ACK

Query 7 Repeat

ACK
SYN

SYN Repeat

SYN + ACK

ACK
TCP

connection

Query 0 (7)

Response 0 + ACK

Response 7

ACK

Query 1 (8) + ACK

Response 1 + ACK

ACK
Response 8

ACK Queue

emptied

8

Query 9

ACK
Query 2 (9)

Response 2 + ACK

Response 9

ACK

+1s

ACK

Gateway

Queue

emptied

Figure 19-3: The remote slave powered up again

Figure 19-3 shows that once the gateway queue has been deleted due to the abort of the
remote slave’s TCP connection further queries are again acknowledged and subsequent can
again be stored in the gateway master’s queue. A further TCP connection attempt to the
remote slave is also automatically initiated, although this connection attempt is initially
unsuccessful (no response to the TCP SYN).

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 59/78 29.07.2012

The first repetition of the TCP SYN does however invoke a response from the remote slave,
which has just been powered up again in this example, and so a new TCP connection is then
established. It is to be noted that MODBUS messages on a TCP connection have their own
TCP transaction identifies and so the query with transaction identifier 7 on the connection
from the remote master now has the transaction ID 0 on the connection to the remote slave.
Its response is however routed back to the remote master with its original transaction ID of 7.

Once the query 7 has been answered, the queued query 8 is immediately sent, causing its
response to also be routed back to the remote master, emptying the gateway queue.

The remote master now continues polling the remote slave at 1 second intervals as was
originally the case.

The size of the gateway’s queue can be individually configured as detailed in chapter 16
(“MODBUS Queues”).

This example showed that the mechanisms enable short interruptions in the TCP connection
to be bridged but this doesn’t necessarily mean that the MODBUS slave timeouts are still
respected. It also shows that broken connections will be automatically re-established as soon
as possible; queued gateway messages will however be deleted when the connection aborts
and so some data loss is to be expected. The MODBUS application at the remote MODBUS
TCP master has always the final responsibility of monitoring successful data exchanges and
repeating in case this is required when queries are either not responded to or only after an
unacceptable delay.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 60/78 29.07.2012

20. FLASH and SRAM Consumption by the MODBUS Module

Since the µTasker MODBUS module is very flexible in the functions that it supports and also
has highly flexible detailed configuration it is possible to activate just the support items
necessary for a particular project. This results in an optimum use of system resources;
FLASH and RAM.

The following table represents typical FLASH and RAM requirements for various typical
configurations. The values are in addition to the resources used by the µTasker base project,
including the µTasker operating system, serial drivers and TCP/IP stack.

 MODBUS module Example
MODBUS

application

Configuration FLASH RAM FLASH SRAM

MODBUS slave including standard
function support (base for serial and/or
TCP)

3k5 1k 500 150

Serial RTU and ASCII 1k5 - - -

Line function and diagnostics 3k - - -

Master mode 1k5 - 1k 350

Gateway routing 1k 200 - -

routing queues + RS485 1k5 + queues on
heap

- -

MODBUS TCP/IP – master and slave 2k + TCP
transmission
buffers on
heap (256
bytes / socket)

500 -

Total for complete functionality 14k 1k5 + Heap 2k 500

Note that the code sizes are also processor, compiler and optimisation dependent. The
reference values were taken from a Coldfire project compiled with CodeWarrior V7.1 with
optimisation for size.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 61/78 29.07.2012

21. Testing the MODBUS Reference Project in the µTasker
Simulator

One of the most powerful features offered by the µTasker project is its capability to
accurately simulate complete projects, including the UART and Ethernet operation of the
target processor. The MODBUS demo modbus_app.c makes use of this fact by configuring

a complete MODBUS system on a single (simulated) board for testing both UART and TCP
interface as illustrated in figure 21.1.

MODBUS

Master

Application

MODBUS

Slave

Application

2

Master

UART

MODBUS

Gateway

Routing

TCP Slave

Gateway
Socket

IP Address 192.168.0.3
Port number 502

TCP Master

Serial Slave

UART

Query

Response

Ethernet

RS232/RS485

Slave Address

33

MODBUS

Port 0

MODBUS

Port 1

MODBUS

Port 2

MODBUS

Port 3

MODBUS

Port 4

TCP Master
TCP Slave
Gateway

Socket

MODBUS

Port 5

IP Address 192.168.0.3

Port number 4321

Parameters

Slave

Figure 21-1: A MODBUS TCP/Serial Bridge

The default configuration requires a processor with Ethernet and two UARTs, whereby
processors without Ethernet will automatically be configured to use only the UART part of the
configuration with the Master Application using serial master MODBUS port 0 directly instead
of the TCP master MODBUS port 4.

The Ethernet option PSEUDO_LOOPBACK (in config.h) allows a simulated device to receive

IP frames on its own IP address. This is very practical for simulation use since the entire
TCP/IP protocol stack at master and slave are paused when breakpoints are reached, which
ensures that the protocol cannot break down due to debug intervention. This is not possible
on a real target and tests with a real target require the master TCP part to be on a different
node to the TCP slave part.

The MODBUS application is essentially the routine fnModbusTest() together with the

master call-back fnMODBUSmaster(). fnModbusTest() is called after the configuration

has been initialised and sends the first MODBUS query. On each slave response (or an
exception or a timeout) the next test query is sent until all test requests/commands have

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 62/78 29.07.2012

been completed and the test begins from the first query again. The master application
doesn’t use a timer of its own since it makes use of call-back events to kick off the following
test, resulting in a test sequence which runs as fast as the slave can respond to each
individual request/command.

In the default configuration the TCP slave (MODBUS port 2) which is connected to the TCP
master (MODBUS port 4) receives all queries and routes them actively to the MODBUS
serial master (MODBUS port 0) which relays them to the slave address 33.

By connecting the two UARTs using COM port mapping (either a cross-over cable between
real COM ports or a virtual loop back using “com0com”, or similar) the serial query is
received by the serial slave (MODBUS port 1) where it is handled based on local parameter
and the intervention of its local pre-/post- call-back routines.

The slave response is automatically routed back to the destination TCP master (MODBUS
port 4) and received by its master call-back which then initiates the following test.

The master handler generates debug messages (either on the debug UART, TELNET or
USB depending on the configuration and processor capabilities).

When MODBUS over TCP is enabled the test is started using the command

 fnModbusTest(4); // start a MODBUS master test on TCP master

When MODBUS over TCP is disabled it is initiated by

 fnModbusTest(0); // start a MODBUS master test on the serial port

In this case only the serial interfaces are involved.

In order to perform a similar test with a second TCP master/slave combination, but without
serial routing, the test can be initiated using:

 fnModbusTest(5); // start a MODBUS master test on TCP master

This involves a second TCP connection between MODBUS ports 5 and 3, whereby the TCP
slave directly performs the slave function. The value of TEST_SLAVE_ADDRESS should be

changed (in modbus_app.c) from 33 to

MODBUS_TCP_NON_SIGNIFICANT_UNIT_IDENTIFIER in this case so that the TCP slave

actually handles the reception.

Note that a further advantage of testing over a TCP MODBUS connection is the fact that
Wireshark can be used to monitor the Ethernet traffic. Wireshark interprets MODBUS
content, which allows for comfortable testing and analysis of the demo and real MODBUS
projects.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 63/78 29.07.2012

22. Conclusion

The µTasker MODBUS extension module has been designed to be a flexible and efficient
solution to most modern day MODBUS requirements. It has rich features allowing it to not
just perform classic master and slave modes of operation but to fulfil demanding
requirements with multiple serial and TCP interfaces as well as powerful gateway and routing
functions.

The features, as described in detail within this document, can be summarised as follows:

MODBUS Serial RTU/ASCII

• Multiple serial master and slave interfaces (limited only by processor UART
availability)

• Multiple slaves at each UART interface (each with its own slave address, resources
and application interface)

• Routing of received messages to other MODBUS master interfaces based on function
codes, access ranges or other decisions.

• RS485 RTS control

• Serial/serial bridge function

• ASCII slave support via USB

MODBUS TCP

• Multiple master and slave TCP ports

• Each slave TCP port supports multiple sessions (multiple master connections)

• Configurable idle connection timeout on each TCP port

• Multiple slaves on each TCP port (each with its own slave address, resources and
application interface)

• Slave gateway operation to TCP or serial MODBUS masters

• Slave routing operation to multiple TCP or serial masters via a single TCP port

General

• Autonomous handling of commands and requests or with application intervention.

• Coils and discrete elements can be optimally overlaid with registers (architecturally
independent)

• Simple generation of public MODBUS function data content, simplifying application
interface.

• Supports delayed slave responses while external data is accessed.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 64/78 29.07.2012

The µTasker project includes an example MODBUS configuration which allows testing of the
supported public MODBUS functions on various targets of within the µTasker simulator. This
exercises TCP master/slave and also serial master/slave connections, including a gateway
transfer between TCP and UART interfaces, allowing the operation to be easily analysed.

Real projects can utilise the demonstration project as a foundation for new configurations
allowing demanding MODBUS functionality to be achieved in a very short time with a
minimum learning curve involved.

The µTasker MODBUS project supports various target processors and is fully supported by
e-mail and on the µTasker forum http://www.uTasker.com/forum/

Modifications:

- V1.00 15.07.2009 First release

- V1.01 28.07.2009 Add AVR32 details in appendix A

- V1.02 26.08.2009 Add USB slave support {V1.02} and additional routing control {V1.05}

- V1.03 25.09.2009 Add chapter explaining details of TCP connections and breakdowns
{V1.07}

- V1.04 26.09.2009 Add explanation of mapping slave addresses in a gateway transfer

- V1.05 13.01.2010 Add not on RS485 RTS frame diagram – figure 11-1

- V1.06 20.05.2010 Correct Write single register (0x06) example in appendix A

- V1.07 29.07.2012 Add STM32 and Kinetis details in Appendix B

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 65/78 29.07.2012

Appendix A – Public Functions Supported by the µTasker MODBUS
Module

When a MODBUS master needs to send a command or request it can do so using the
function:

 extern int fnMODBUS_Master_send(

 unsigned char ucInterface, // MODBUS port number

 unsigned char ucSlave, // slave address

 unsigned short usFunction, // public function

 void *details); // data content

When sending public functions the application code doesn’t need to be fully aware of the
data format but instead needs only to pass details about the access range. The following
transmission examples show the use of each supported public function, whereby the request
is being sent to MODBUS port 0 and to a slave address defined by TEST_SLAVE_ADDRESS.

Read a quantity of coils (0x01)

 static MODBUS_READ_QUANTITY read_coils = { 57, 11};

 // starting at coil address 57 read 11 coils

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_READ_COILS,

 (void *)&read_coils);

Read discrete inputs (0x02)

 static MODBUS_READ_QUANTITY read_discretes = { 15, 7};

 // starting at input address 15 read 7 inputs

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_READ_DISCRETE_INPUTS,

 (void *)&read_discretes);

Read holding registers (0x03)

 const MODBUS_READ_QUANTITY read_holding_regs = { 2, 1};

 // starting at register address 2 read 1 inputs

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_READ_HOLDING_REGISTERS,

 (void *)&read_holding_regs);

Read input registers (0x04)

 const MODBUS_READ_QUANTITY read_input_regs = { 24, 3};

 // starting at register address 24 read 3 registers

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_READ_INPUT_REGISTERS,

 (void *)&read_input_regs);

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 66/78 29.07.2012

Write single coil (0x05)

 static MODBUS_COIL_STATE write_coil = { 50, 1}; // set coil 50 to state 1

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_WRITE_SINGLE_COIL,

 (void *)&write_coil);

Write single register (0x06)

 const MODBUS_SINGLE_REGISTER write_register = {2, 0x1234}; // write register at address 2

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS, MODBUS_WRITE_SINGLE_REGISTER,

 (void *)&write_register);

Read exception status (0x07) – (Serial Line Only)

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_READ_EXCEPTION_STATUS, 0);

This request has no data part.

Diagnostics (0x08) – (Serial Line Only)

 const MODBUS_DIAGNOSTICS_REQUEST diag = {MODBUS_DIAG_SUB_RETURN_QUERY_DATA, 0x1234};

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS, MODBUS_DIAGNOSTICS,

 (void *)&diag);

This request has several sub-function codes but always 2 bytes of data. The possible sub-
functions are:

• MODBUS_DIAG_SUB_RETURN_QUERY_DATA

• MODBUS_DIAG_SUB_RESTART_COMS

• MODBUS_DIAG_SUB_RETURN_DIAG_REG

• MODBUS_DIAG_SUB_CHANGE_ASCII_DELIM

• MODBUS_DIAG_SUB_FORCE_LISTEN_ONLY

• MODBUS_DIAG_SUB_CLEAR_DISGNOSTICS

• MODBUS_DIAG_SUB_RTN_BUS_MSG_CNT

• MODBUS_DIAG_SUB_RTN_BUS_COM_ERR_CNT

• MODBUS_DIAG_SUB_RTN_BUS_EXC_ERR_CNT

• MODBUS_DIAG_SUB_RTN_SLAVE_MSG_CNT

• MODBUS_DIAG_SUB_RTN_SLAVE_NO_RSP_CNT

• MODBUS_DIAG_SUB_RTN_SLAVE_NAK_CNT

• MODBUS_DIAG_SUB_RTN_SLAVE_BSY_CNT

• MODBUS_DIAG_SUB_RTN_BUS_CHR_ORUN_CNT

• MODBUS_DIAG_SUB_CLEAR_ORUN_AND_FLG

Get Comm Event Counter (0x0b) – (Serial Line Only)

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_GET_COMM_EVENT_COUNTER, 0);

This request has no data part.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 67/78 29.07.2012

Get Comm Event Log (0x0c) – (Serial Line Only)

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_GET_COMM_EVENT_LOG, 0);

This request has no data part.

Write Multiple Coils (0x0f)

 const static unsigned char coil_values[] = { 0x55, 0xaa, 0x07 };

 static MODBUS_BITS multi_coils = { (MODBUS_BITS_ELEMENT *)&coil_values[0],

 {55, (55 + 8 -1)}}; // write 8 coils starting at coil 55

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS, MODBUS_WRITE_MULTIPLE_COILS

 (void *)&multi_coils);

Write Multiple Registers (0x10)

 static const unsigned short reg_values[] = { 0x55aa, 0xcc33, 9876, 0xabcd };

 const MODBUS_REGISTERS multi_regs = { (unsigned short *)®_values[0], {2, 5}};

 // write 4 registers starting at address 2 and finishing at address 5

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS,MODBUS_WRITE_MULTIPLE_REGISTERS,

 (void *)&multi_regs);

Report Slave ID (0x11) – (Serial Line Only)

 fnMODBUS_Master_send(0, TEST_SLAVE_ADDRESS, MODBUS_REPORT_SLAVE_ID, 0);

This request has no data part.

Mask Write Register (0x16)

 const MODBUS_SINGLE_REGISTER_MASK reg_mod = {2, 0xff00, 0x0055};

 // AND register at address 2 with 0xff00 and then OR with 0x0055

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS, MODBUS_MASK_WRITE_REGISTER,

 (void *)®_mod);

Read/Write Multiple Registers (0x17)

 static const unsigned short reg_values[] = {0x1234, 0x5678, 0x9abc, 0xdef0, 0x55aa};

 const MODBUS_READ_WRITE_REGISTERS multi_regs = {{2, 5},

 {(unsigned short *)®_values[0], {2, 6}}}; // write 5 holding registers starting

 at address 2 and finishing at

 address 6, then read 5 registers starting at address 2

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS,

 MODBUS_READ_WRITE_MULTIPLE_REGISTER, (void *)&multi_regs);

Read FIFO Queue (0x18)

 const FIFO_ADDRESS FIFO_Add = {0x0003}; // read FIFO queue from FIFO pointer register 3

 fnMODBUS_Master_send(ucMasterTestPort, TEST_SLAVE_ADDRESS, MODBUS_READ_FIFO_QUEUE,

 (void *)&FIFO_Add);

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 68/78 29.07.2012

None-supported functions

• Read File Record (0x14)

• Write File Record (0x15)

• Get Comm Event Log (0x0c)- no log retained

• Encapsulated Interface Transport (0x2b)

- CANopen General Reference Request and Response (0x2b / 0x0d)

- Read Device Identification (0x2b / 0x0e)

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 69/78 29.07.2012

Appendix B – Hardware Dependencies

a) Hardware Timers used by the MODBUS Module

Depending on the target processor and the operating modes supported by the MODBUS
module some hardware timers may be required. The timers are used to perform the following
functions on serial MODBUS ports:

• RTU inter-character space timing. One timer per UART receiver, unless the UART
contains an idle line timer built in to its hardware.

• RTS line control in RS485 mode. One timer per UART transmitter when this mode is
used, unless the UART supports RS485 operation in HW or has other timing suitable
for control without extra delays.

Note that these two functions can be performed by a single hardware timer since their
activities never overlap during MODBUS operation. This is true due to the fact that the
MODBUS protocol is not full-duplex in nature and so only either the receiver or the
transmitter is ever active at any specific point in time.

Furthermore it is possible to allocate the same hardware timer to control the operation of
multiple UARTs as long as the UARTs are not used at the same time. This restriction is
however not practical in the majority of MODBUS systems.

The following section details the timers used and the method of configuring the specific
hardware.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 70/78 29.07.2012

b) Processor-specific Hardware Defines

Freescale Coldfire V2 MCU

When either RTU mode or RS485 mode is enabled the Coldfire requires a single DMA timer
per enabled UART. The choice of DMA timers for each UART is configured in
app_hw_m5223x.h:

 #define _TIMER_INTERRUPT_SETUP DMA_TIMER_SETUP // the timer interface type for MODBUS

 #define SUPPORT_DMA_TIMER // always activate DMA timer support for use by MODBUS

 #define MODBUS0_DMA_TIMER_CHANNEL 3

 // use DMA timer channel 3 for first MODBUS serial port

 #define MODBUS0_DMA_TIMER_INTERRUPT_PRIORITY DTIM3_INTERRUPT_PRIORITY

 #define MODBUS1_DMA_TIMER_CHANNEL 1

 // use DMA timer channel 1 for second MODBUS serial port

 #define MODBUS1_DMA_TIMER_INTERRUPT_PRIORITY DMA_TIMER1_INTERRUPT_PRIORITY

 #define MODBUS2_DMA_TIMER_CHANNEL 2

 // use DMA timer channel 2 for third MODBUS serial port

 #define MODBUS2_DMA_TIMER_INTERRUPT_PRIORITY DMA_TIMER2_INTERRUPT_PRIORITY

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 1

 #define MODBUS_UART_1 2 // MODBUS UART port 1 uses physical UART 2

 #define MODBUS_UART_2 0 // MODBUS UART port 2 uses physical UART 0

When RS485 mode is selected the RTS signal belonging to the UART is automatically
configured and controlled.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 71/78 29.07.2012

ATMEL SAM7X

The SAM7X supports idle line timing on USARTs 0 and 1 but not on the debug unit UART 2
(DBGU). It also supports RS485 mode on USARTs 0 and 1 but not on the debug unit UART
2 (DBGU). If only USARTs 0 and 1 are used, no hardware timers are required for any serial
MODBUS modes.

When a serial MODBUS port is configured on UART2 (DBGU) one hardware timer will be
required (timers 0..2 are available). This is configured in app_hw_sam7x.h as in the

following example:

 #define SUPPORT_TIMER // MODBUS required HW timer in RTU/RS485 modes

 #define SUPPORT_US_TIMER // allow us resolution

 #define _TIMER_INTERRUPT_SETUP TIMER_INTERRUPT_SETUP

 // the timer interface type for MODBUS

 #define MODBUS2_TIMER_CHANNEL 0 // use timer 0 for third MODBUS serial port

 #define PRIORITY_HW_TIMER 4 // interrupt priority of HW timers

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 1

 #define MODBUS_UART_1 0 // MODBUS UART port 1 uses physical UART 0

 #define MODBUS_UART_2 1 // MODBUS UART port 2 uses physical UART 2 (DBGU)

 #define DBGU_UART // enable serial on DBGU

When RS485 mode is selected the RTS signal belonging to the USARTs are automatically
configured and controlled. The RTS signal used by UART2 must be additionally defined as
follows since a general purpose port is used:

 #define RTS_2_PIN PA29 // PA29 is used as RTS line

 #define RTS_2_PORT PIOA // on port A

 #define RTS_2_PORT_OUT PIO_OER_A // register to enable output

 #define RTS_2_PORT_SET PIO_SODR_A // register to set output high

 #define RTS_2_PORT_CLEAR PIO_CODR_A // register to set output low

Note that the polarity of the RTS signal from the USARTs (channel 0 or channel 1) is fixed as
‘1’ during transmission and cannot be configured as can other RTS outputs. This is due to
the operation of the device in RS485 mode where it drives this signal directly. This polarity is
however suitable for most RS485 transceiver circuits.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 72/78 29.07.2012

ATMEL AVR32

The AVR32 supports idle line timing on all 4 USARTs. It also supports RS485 mode on
USARTs 1 only. If only USART 1 is used, no hardware timers are required for any serial
MODBUS modes.

When a serial MODBUS port is configured on one of the other USARTs (0, 1 or 2) and
RS485 mode is needed, one hardware timer will be required for each RTS output (timers 0..2
are available). This is configured in app_hw_avr32.h as in the following example:

 #define SUPPORT_TIMER // MODBUS required HW timer in RS485 modes

 #define SUPPORT_US_TIMER // allow us resolution

 #define _TIMER_INTERRUPT_SETUP TIMER_INTERRUPT_SETUP

 // the timer interface type for MODBUS

 #define MODBUS0_TIMER_CHANNEL 0 // use timer 0 for first MODBUS serial port

 #define MODBUS2_TIMER_CHANNEL 1 // use timer 1 for third MODBUS serial port

 #define MODBUS3_TIMER_CHANNEL 2 // use timer 2 for fourth MODBUS serial port

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 1

 #define MODBUS_UART_1 0 // MODBUS UART port 1 uses physical UART 0

 #define MODBUS_UART_2 3 // MODBUS UART port 2 uses physical UART 3

 #define MODBUS_UART_3 2 // MODBUS UART port 3 uses physical UART 2

When RS485 mode is selected the RTS signal belonging to the USARTs are automatically
configured and controlled.

Note that the polarity of the RTS signal from USART1 (channel 1) is fixed as ‘1’ during
transmission and its polarity cannot be configured as can other RTS outputs. This is due to
the operation of the device in RS485 mode where it drives this signal directly. This polarity is
however suitable for most RS485 transceiver circuits.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 73/78 29.07.2012

Luminary Micro

When either RTU mode or RS485 mode is enabled the Luminary Micro targets requires a
single timer per enabled UART. The choice of timers for each UART is configured in
app_hw_lm3sxxxx.h:

#define SUPPORT_TIMER // enable timer support

#define _TIMER_INTERRUPT_SETUP TIMER_INTERRUPT_SETUP

#define MODBUS0_TIMER_CHANNEL 0 // MODBUS serial port 0 used timer 0

#define MODBUS1_TIMER_CHANNEL 1 // MODBUS serial port 1 used timer 1

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 1

 #define MODBUS_UART_1 0 // MODBUS UART port 1 uses physical UART 0

When RS485 mode is selected the RTS signal belonging to the UARTs is configured as
follows:

 #define RTS_0_PORT GPIODATA_D // on port D

 #define RTS_0_PIN PORTD_BIT1 // Port D-1 is used as RTS0 line

 #define RTS_0_PORT_POWER CGC_GPIOD // port’s power bit

 #define RTS_0_PORT_ENABLE GPIODEN_D // port’s enable bit

 #define RTS_0_PORT_DDR GPIODIR_D // ports data direction register

 #define RTS_1_PORT GPIODATA_D // on port D

 #define RTS_1_PIN PORTD_BIT0 // Port D-0 is used as RTS1 line

 #define RTS_1_PORT_POWER CGC_GPIOD // port’s power bit

 #define RTS_1_PORT_ENABLE GPIODEN_D // port’s enable bit

 #define RTS_1_PORT_DDR GPIODIR_D // ports data direction register

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 74/78 29.07.2012

NXP LPC2XXX

When RTU mode is enabled the LPC2xxx targets require a single timer per enabled UART.
The choice of timers for each UART is configured in app_hw_lpc23xx.h:

#define SUPPORT_TIMER // enable timer support

#define _TIMER_INTERRUPT_SETUP TIMER_INTERRUPT_SETUP

#define MODBUS0_TIMER_CHANNEL 1 // MODBUS serial port 0 used timer 1

#define MODBUS1_TIMER_CHANNEL 2 // MODBUS serial port 1 used timer 2

#define MODBUS2_TIMER_CHANNEL 3 // MODBUS serial port 2 used timer 3

Note that the LPC2xxx uses one of its timers for the µTasker operating tick. This timer can
therefore not be assigned for controlling a MODBUS UART. Which timer is used by the tick
interrupt is also defined in app_hw_lpc23xx.h. The default timer is timer 0, and

alternatives are set by #define TICK_TIMER_X, where X is the hardware timer number

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 1

 #define MODBUS_UART_1 0 // MODBUS UART port 1 uses physical UART 0

When RS485 mode is selected the RTS signal belonging to the UARTs is configured as
follows:

 #define RTS_0_PORT_SET FIO0SET // register to set RTS0

 #define RTS_0_PORT_CLR FIO0CLR // register to clear RTS0

 #define RTS_0_PIN PORT0_BIT6 // Port 0.6 is used as RTS0 line

 #define RTS_0_PORT_DDR FIO0DIR // ports data direction register

 #define RTS_0_PORT PORT_0 // on port 0

 #define RTS_1_PORT_SET FIO0SET // register to set RTS1

 #define RTS_1_PORT_CLR FIO0CLR // register to clear RTS0

 #define RTS_1_PIN PORT0_BIT7 // Port 0.7 is used as RTS1 line

 #define RTS_1_PORT_DDR FIO0DIR // ports data direction register

 #define RTS_1_PORT PORT_0 // on port 0

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 75/78 29.07.2012

ST-Micro STM32

When RTU mode is enabled the STM32 targets require a single timer per enabled UART.
The choice of timers for each UART is configured in app_hw_stm32.h:

#define SUPPORT_TIMER // enable timer support

#define _TIMER_INTERRUPT_SETUP TIMER_INTERRUPT_SETUP

#define MODBUS0_TIMER_CHANNEL 3 // MODBUS serial port 0 used timer 3

#define MODBUS1_TIMER_CHANNEL 4 // MODBUS serial port 1 used timer 4

Note that the STM32 uses timers 2, 3, 4 or 5 for this function due to the fact that these timers
are available in all devices.

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 2

 #define MODBUS_UART_1 0 // MODBUS UART port 1 uses physical UART 1

 #define MODBUS_UART_1 3 // MODBUS UART port 3 uses physical UART 4

(Note that the STM32 USARTs count from 1)

When RS485 mode is selected the RTS signal belonging to the UART may have several
remapping possibilities. The set used can be configured using defines such as
USART2_REMAP – see the STM32 developer’s document for more details. It is to be noted
that the RTS signal is actually configured and controlled in GPIO mode rather than using
automatic RTS control, which is not suitable for this operation; this detail is however not of
significance to the user of the UART interface.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 76/78 29.07.2012

Freescale Kinetis

When RTU mode is enabled the Kinetis targets require a single PIT timer per enabled UART.
The choice of PIT used for each UART is configured in app_hw_kinetis.h:

#define SUPPORT_PITS // support PITs

#define _TIMER_INTERRUPT_SETUP PIT_SETUP

#define MODBUS0_PIT_TIMER_CHANNEL 0

#define MODBUS1_PIT_TIMER_CHANNEL 1

#define MODBUS2_PIT_TIMER_CHANNEL 2

#define MODBUS3_PIT_TIMER_CHANNEL 3

#define MODBUS0_PIT_INTERRUPT_PRIORITY PIT0_INTERRUPT_PRIORITY

#define MODBUS1_PIT_INTERRUPT_PRIORITY PIT1_INTERRUPT_PRIORITY

#define MODBUS2_PIT_INTERRUPT_PRIORITY PIT2_INTERRUPT_PRIORITY

#define MODBUS3_PIT_INTERRUPT_PRIORITY PIT3_INTERRUPT_PRIORITY

The mapping of MODBUS serial port to UART is configured by

 #define MODBUS_UART_0 1 // MODBUS UART port 0 uses physical UART 1

 #define MODBUS_UART_1 0 // MODBUS UART port 1 uses physical UART 0

 #define MODBUS_UART_1 3 // MODBUS UART port 3 uses physical UART 3

When RS485 mode is selected automatic RTS control mode in the device is used.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 77/78 29.07.2012

c) RTS Delay Time Measurements

The following results were obtained by measuring the final transmission interrupt of the
UART interface, operating at 19’200Baud, sending an RTU frame. Devices supporting DMA
operation were also measured in DMA mode, where the final interrupt corresponds to the
DMA completion interrupt.

The values were used to configure a timer (where required) to generate a time delay suitable
for deactivating the RTS signal as the final stop bit is sent to the MODBUS bus.

Freescale Coldfire V2 MCU

• M522xx Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 17us before
first bit. Last character interrupt about 10.9 bit times before end (0.57ms).

• M522xx DMA 19’200 Baud (Bit Period 52us). RTS activated about 17us before first
bit. Last character (DMA complete) interrupt about 22 bit times before end (1.144ms).

ATMEL SAM7X

• SAM7X Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 20us..70us
(varies due to synchronisation to the UART clock) before first bit. Last character
interrupt about 9.8 bit times before end (0.512ms).
Note: UART2 (using ports as RTS) has activation stable at about 37us and identical
off delay.

• SAM7X DMA 19’200 Baud (Bit Period 52us) [USART0 and USART1]. RTS activated
about 20us..70us (varies due to synchronisation to the UART clock) before first bit.
Last character (DMA complete) interrupt about 21 bit times before end (1.08ms).
Note: UART2 (using ports as RTS) has activation stable at about 37us and identical
off delay.

• SAM7X in RS485 mode 19’200 Baud (Bit Period 52us) [USART0 and USART1 only].
RTS activated about 20us..35us (varies due to synchronisation to the UART clock)
before first bit. RTS is active High. RTS automatically negated (low) exactly at the end
of the stop bit. (By setting US_TTGR to 1..255 additional bit period delays can be
added, but not needed for the MODBUS driver).

• NOTE: DBGU of SAM7X [UART2] cannot operate in 7 bit mode. This means that it
can only operate in RTU mode.

www.uTasker.com µTasker – MODBUS Module

uTaskerV1.4_MODBUS/1.07 78/78 29.07.2012

ATMEL AVR32

• AVR32 Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 20us..70us
(varies due to synchronisation to the UART clock) before first bit. Last character
interrupt about 9.8 bit times before end (0.512ms).
Note: UART2 (using ports as RTS) has activation stable at about 37us and identical
off delay.

• AVR32 DMA (to be added)

• AVR32 in RS485 mode 19’200 Baud (Bit Period 52us) [USART1 only]. RTS activated
about 20us..35us (varies due to synchronisation to the UART clock) before first bit.
RTS is active High. RTS automatically negated (low) exactly at the end of the stop bit.
(By setting US_TTGR to 1..255 additional bit period delays can be added, but not
needed for the MODBUS driver).

Luminary Micro

• LM3Sxxxx Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 13us before
first bit. Last character interrupt about 11.9 bit times before end (0.62ms).

• LM3Sxxxx DMA 19’200 Baud (Bit Period 52us). RTS activated about 13us before first
bit. DMA transmission complete interrupt about 11.9 bit times before end (0.62ms).

NXP LPC23XX

• LPC23XX Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 20us..70us
(varies due to synchronisation to the UART clock) before first bit. Last character
interrupt about 1 bit before end (43us).

ST-Micro STM32

• STM32 Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 13us before first
bit. Last character interrupt about 11.9 bit times before end (0.62ms).

Freescale Kinetis

• When RS485 mode is selected automatic RTS control mode in the device is used
which automatically controls the activation and negation of the line.

