

uTaskerCAN.doc/1.01 Copyright © 2014 M.J.Butcher Consulting

Embedding it better...

µTasker Document

Controller Area Netwok (CAN)

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 2/21 9.3.2014

Table of Contents
1. Introduction ...3

2. CAN Bit Timing ..4

3. CAN Frame Format ...5

4. Configuring for CAN bus use ..6

5. Opening the CAN interface ...7

6. Sending CAN Data Messages ..9

7. Receiving CAN data messages .. 11

5.1. Remote Frames ... 12

8. CAN Monitoring and Simulation ... 14

9. Testing CAN Operation in the µTasker Project .. 17

10. Conclusion ... 18

Appendix A – Hardware Dependencies .. 19

a) FlexCAN ... 19

b) bxCAN... 20

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 3/21 9.3.2014

1. Introduction

CAN (Controller Area Network) is an asynchronous serial communication protocol. It is
implemented as a bus with the following limiting speed/distance combinations:

• Maximal speed of CAN bus is 1M, with a range of about 40m.

• At 100kb/s a range of about 500m is possible

• At 10kb/s approximately 1km is possible

CAN is often used in automotive electronics to control such things as engine management,
lights, sensors, ABS etc. but it is not restricted to this use and has found wide acceptance in
many industrial applications.

Nowadays the CAN specification 2.0B is commonly respected by the controllers.

This document discusses the use of the µTasker CAN driver and includes the necessary
technical details of the CAN protocol to enable the user to make decisions as to the best
configuration and use in a particular environment.

The µTasker CAN interface and the µTasker project CAN demonstration are described as
well as a technique for integrating the µTasker simulator into CAN networks for powerful
development and debugging capabilities.

In the appendix there are additional hardware details concerning the CAN controllers
supported on particular processors.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 4/21 9.3.2014

2. CAN Bit Timing

The bit speed defines the data rate of the CAN bus, limited to maximum 1Mb/s.

One bit time is divided into 4 time segments, which are used for bit level synchronisation.
These 4 time segments, in the order in which they take place, are called:

- Synchronisation segment [an edge is expected to lie in this segment]

- Propagation time segment [a compensation for physical and driver bus delays – twice the
actual delay value]

- Phase buffer segment 1 [Together with buffer segment 2 the sample point can be
synchronised to compensate for edge phase errors]

- Phase buffer segment 2

The actual sample point occurs at the end of Phase buffer segment 1 / start of Phase buffer
segment 2.

The flexibility with which these phases can be adjusted depends on the Time Quantum used.
The Time Quantum divides the bit time into units which can be distributed between the 4 time
segments. The smaller the Time Quantum, the higher the resolution of possible adjustments.
The number of Time Quanta is normally adjustable from at least 8 to 25.

The synchronisation segment has always a fixed single Time Quantum unit.

The Propagation time segment and Phase buffer segment 1 can be programmed from 1 to 8
Time Quanta units.

CAN controllers have also an IPT (Information Processing Time) which is also expressed in
Time Quanta. Typically it has a value of 2.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 5/21 9.3.2014

3. CAN Frame Format

Messages can use either a standard format with 11 bit ID or extended format with 29 bit ID

Standard frames are built up of:

• SOF (1 Start-Of-Frame bit)

• ID (11 bit ID)

• RTR (Remote Transmission Request bit – ‘0’)

• IDE (Identifier extension bit – ‘0’)

• R0 (Reserved bit – set ‘0’)

• DLC (Data Length Control – 4 bits)

• DATA (0..8 bytes of 8 bits)

• CRC (15 bit CRC)

• CRC delimiter (‘1’)

• ACK Slot (Transmitter sends ‘1’ and any receiver can assert a dominant ‘0’)

• ACK delimiter (‘1’)

• EOF (End-Of-Frame 7 recessive bits)

Extended frames are built up of:

• SOF (1 Start-Of-Frame bit)

• Identifier A (11 bit ID)

• SRR (Substitute Remote Request – ‘1’)

• IDE (Identifier Extension Bit – ‘1’)

• Identifier B (18 bit ID)

• RTR (Remote Transmission Request bit – ‘0’)

• R0, R1 (2 reserved bits – set ‘0’)

• DLC (Data Length Control – 4 bits)

• DATA (0..8 bytes of 8 bits)

• CRC (15 bit CRC)

• CRC delimiter (‘1’)

• ACK Slot (Transmitter sends ‘1’ and any receiver can assert a dominant ‘0’)

• ACK delimiter (‘1’)

• EOF (End-Of-Frame 7 recessive bits)

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 6/21 9.3.2014

Frame types:

• Data frame

• Remote frame

• Error frame

• Overload frame

The code stream uses bit stuffing. After 5 consecutive identical levels (0 or 1) a
complimentary bit is inserted into the bit stream which is then removed at the receiver.

4. Configuring for CAN bus use

The uTasker is delivered with general CAN support in the file can_drv.c. This is the

generic driver which is essentially hardware independent. The low level interfacing with the
CAN controller itself is performed in the hardware file (for example, M5223X.c in the case of

this device with internal CAN support).

To activate the necessary support in the project the following define should be set in
config.h:

 #define CAN_INTERFACE

This will enable all the necessary code and also example routines in the demonstration
project.

Then it is necessary to specify how many logical CAN interfaces you would like to use. This
ensures that the optimum amount of resources are reserved for the interface based on the
application in hand. Although a CAN interface is a single hardware connection to the CAN
bus it can be envisaged as a number of logical interfaces which share it – there may for
example be several independent software modules communicating via the bus and so each
of these software modules can have its own virtual communication channel on the bus.

In the case of a single hardware interface and controller but three software modules sharing
the bus the define #define NUMBER_CAN 3 reserves the necessary resources for each of

these to operate on their own virtual interface.

Often the processors include more than one CAN controller and so, if each of the CAN
controllers were associated with 3 software modules using each interface the value #define

NUMBER_CAN (2 * 3) would be appropriate.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 7/21 9.3.2014

5. Opening the CAN interface

The CAN interface is opened and configured by using the generic open function fnOpen().

The interface type is specified to be of TYPE_CAN for input and output along with some

parameters:

QUEUE_HANDLE CAN_interface_ID = fnOpen(

 TYPE_CAN, FOR_I_O, &tCANParameters);

The first time that the open if performed for the hardware channel, the controller is configured
for use. When subsequent opens are called, the interface parameters are not set or modified
but only logical interfaces activated. This means that the first caller of the open function is
responsible for setting the hardware’s operating characteristics.

CANTABLE tCANParameters; // table for passing information to driver

tCANParameters.cTask_to_wake = OWN_TASK; // wake us on buffer events

tCANParameters.ucChannel = 0; // first hardware interface

tCANParameters.ulSpeed = 1000000; // 1 MHz speed

tCANParameters.ulTxID = 0x102; // default ID of destination

tCANParameters.ulRxID = (CAN_EXTENDED_ID | 0x00000105); // our extended ID

tCANParameters.ulRxIDMask = CAN_EXTENDED_MASK; // use all bits for compare

tCANParameters.usMode = 0; // use normal mode

tCANParameters.ucTxBuffers = 2; // assign two tx buffers for use

tCANParameters.ucRxBuffers = 3; // assign three rx buffers for use

The CAN controller will, in this example, be configured for 1M operation with its own receive
ID and a “default” destination ID. The receive ID can use mask bits but the operation of these
will be a little hardware specific and more details are given in the corresponding hardware
dependent appendix.

As well as configuring the controller, this first open has defined two transmit buffers and three
receive buffers for use by the logical interface. For illustration purposes the receiver ID is a
29-bit extended format ID but the destination ID is a standard 11-bit format. The number of
available buffers in the hardware controller limits the maximum number of logical interfaces
and once the buffers have all been allocated no more logical interfaces can be defined. Since
the number of usable buffers is hardware dependent you will have to know the basics of your
hardware to get the most out of it. Generally simply try to use up the maximum number of
buffers possible since this is the best solution, whereas the more buffers available the more
efficient it can work and less are the chances of receiver overruns or blocked transmission
buffers.

Notice that the calling task has entered its coordinates in cTask_to_wake so that it will be

notified of CAN events belonging to the logical interface which it has defined. It is also best to
open multiple logical interfaces from individual tasks for each so that the specific task can
handle its own messages without having to check more than one interface handle.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 8/21 9.3.2014

Here is how a second task (which is started later than the first, which had configured the
operating parameters) opens up a second logical interface on the same hardware port:

QUEUE_HANDLE CAN_interface_ID_2;

CANTABLE tCANParameters; // table for passing information to driver

tCANParameters.cTask_to_wake = OWN_TASK; // wake us on buffer events

tCANParameters.ucChannel = 0; // first hardware interface

tCANParameters.ulSpeed = 0; // speed already defined

tCANParameters.ulTxID = (CAN_EXTENDED_ID | 0x00001234);

 // default extended ID of destination

tCANParameters.ulRxID = 0x144; // our standard ID

tCANParameters.ulRxIDMask = CAN_STANDARD_MASK;

 // use all standard bits for compare

tCANParameters.usMode = 0; // use standard mode

tCANParameters.ucTxBuffers = 6; // assign six tx buffers for use

tCANParameters.ucRxBuffers = 5; // assign five rx buffers for use

CAN_interface_ID_2 = fnOpen(TYPE_CAN, FOR_I_O, &tCANParameters);

Since the second open has requested 6 transmission buffers and 5 reception buffers, the
total number of buffers in the hardware is assume to be at least 16 (which is the amount
available for example in the FlexCAN controller of the M5223X). All buffers have been
allocated in this case and so no further would be possible. The number for the define
NUMBER_CAN is 2 since there are two logical interfaces.

It is also to be expected that the second logical interface is the one which is to be subjected
to the most traffic since it has the most buffers allocated to it.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 9/21 9.3.2014

6. Sending CAN Data Messages

Once the interface has been opened and each logical interface has received a queue handle
the CAN interface can be used. We can send a CAN message by calling the generic
fnWrite() routine.

When sending data it must be sent to a specific destination ID and can have the data length
from 1 to 8 bytes, as according to the CAN specification. A default destination was set for this
logical interface when opened and if this is the destination address of the message to be sent
then it is very easy:

unsigned char ucTestMessage[] = {1,2,3,4,5,6,7}; // test message

if (fnWrite(CAN_interface_ID, ucTestMessage, sizeof(ucTestMessage))

 != sizeof(ucTestMessage)) {

 // Error. Eg. no transmission buffer free

 //

}

The driver will search for a free transmission buffer (the more defined for use by the logical
interface, the more chance that one of them will be free) and organise the transmission. Just
because the write is successful doesn’t mean that the message can actually be delivered, it
means that that the message has been successfully passed to the CAN controller
transmission buffer and the CAN controller will try to deliver it. The delivery process can take
a short time if the bus is heavily loaded and collisions take place. This is the job of the CAN
controller and it will either successfully deliver the message at some time in the near future or
it will fail, for example if the destination address doesn’t exist. We will learn about what
actually happens with the message later when the CAN driver informs us of either success or
failure as described in the next section.

Note that as long as there are free transmission buffers available then more than one
message can be sent (queued) for transmission. The more buffers allocated for a logical
interface, the more messages can be queued.

If it is necessary to send a message to a specific destination address (different from the
default address) then this can be performed by sending it as follows:

unsigned char ucTestMessage[] =

 {((CAN_EXTENDED_ID >> 24) | 0x00), 0x01, 0x02, 0x03, 1,2,3,4,5,6,7};

 // test message starting with destination ID

if (fnWrite(CAN_interface_ID, ucTestMessage,(sizeof(ucTestMessage) | SPECIFIED_ID))

 != sizeof(ucTestMessage)) {

 // Error. Eg. no transmission buffer free

 //

}

Here the first 4 bytes of the message passed to the write function are the destination ID in
network byte order (big-endian) – in this case 0x00010203 and it is an extended format ID.
The length to be transmitted includes the ID length (which is not actually transmitted on to
the bus) and the flag SPECIFIED_ID is set in the length field so that the driver knows that it

must enter this address and remove it from the data before sending. The default destination
ID is not overwritten and so can be used later as normal so that sending to the default
destination ID remains simple. To send a standard format ID, the first four bytes should be
specified without the (CAN_EXTENDED_ID >> 24) flag in the high order byte as in the

following example: 0x00, 0x00, 0x00, 0x05 [standard format ID 5].

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 10/21 9.3.2014

So what happens now? Well we still have to know whether the message or messages which
we just sent off actually arrived or whether there was a transmission error or, more likely, if
the destination was not reachable. It may be that we are using a higher level protocol and so
we expect the destination to return a message so the basic way of operation is that the driver
is silent when messages could be delivered without error. It only disturbs us when there is
bad news.

If however there are benefits in receiving local confirmation of a delivered frame, this can be
activated by setting the CAN_TX_ACK_ON flag in the length field of the write function. This is

probably of most use in systems where only one transmission is outstanding at one time or
for general test purposes. When a frame could be delivered, the owner task is optionally
woken with an interrupt event of type CAN_TX_ACK.

When a transmission fails, the owner task is woken with an interrupt event of type
CAN_TX_ERROR. The task can then read the erroneous buffer using the read call and thus

retrieve the undelivered message. In fact the CAN controller will try repeatedly to deliver a
message and report an error periodically and quite frequently. The error message is sent
only after a number of unsuccessful tries since this indicates that the destination is almost
certainly not reachable. The buffer is then set to an inactive state until the application
retrieves the undeliverable message. Here is an example of how a task can interpret the
interrupt event and retrieve the message contents:

...

 case INTERRUPT_EVENT: // on an interrupt event

 switch (ucInputMessage[MSG_INTERRUPT_EVENT]) {

 case CAN_TX_ERROR: // no ACK to a message we sent

 Length = fnRead(CAN_interface_ID, ucInputMessage,

 GET_CAN_TX_ERROR); // read error

 // ucInputMessage[0]..[3] contains the destination ID

 // ucInputMessage[4]..[Length + 3] contains the message

 break;

...

Just what the application does with the buffer contents is up to the application. The buffer is
however freed for further use after reading the error so the read is important. Such an error
normally means that the destination is not working so repeating is not very useful except for
maybe at a later time once the problem has been fixed.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 11/21 9.3.2014

7. Receiving CAN data messages

When a CAN data message is received it is placed in a free receive buffer and the owner
task is notified of the fact via an interrupt event. It can then pick up the data by calling the
generic fnRead(). It is not necessary to specify the read length since data should be read

as a block from a single buffer, however there are a number of options available.

...

 case INTERRUPT_EVENT: // on an interrupt event

 switch (ucInputMessage[MSG_INTERRUPT_EVENT]) {

 case CAN_RX_MSG:: // a CAN rx. message is waiting

 Length = fnRead(CAN_interface_ID, ucInputMessage,

 (0 | GET_CAN_RX_TIME_STAMP | GET_CAN_RX_ID));

 // collect the message along with some details

 break;

...

In this example the message is returned with a 16 bit time stamp and also the receive ID of
the local CAN buffer. The information is put into the receive buffer ucInputMessage

beginning with a byte signifying the receive status, the 2 byte time stamp, followed by the 4
byte ID and then the data, whose length is returned by the fnRead() call including any

requested details. The time stamp and ID are optional and if they are not specified only the
data will be returned, with a leading byte specifying the receive status.

Note that the fnRead() will return the first message found in a buffer belonging to the calling

task. If there is more than one reception waiting, there will also be more than one
CAN_RX_MSG to wake the task. It is typical to enclose the read of the CAN handle in a loop

until a length of zero is returned so that multiple receptions take place as fast as possible.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 12/21 9.3.2014

5.1. Remote Frames

Remote Frames are a nice feature of the CAN bus which allow one node to request data
from another using a pick-up mail box. The node supplying the data doesn’t have to wait for
the other node to request it but can put the data in a local mail box and this will be
automatically sent in response to the Remote Frame.

This feature has been integrated into the µTasker CAN driver so that it is very simple to use.

There are two cases:

• The first is when some data is to be put into the mail box for collection. It is like
sending data but the data is not sent immediately but rather when specifically
requested using a Remote Frame from another node. When there is more than one
Remote Frame received, the same data is sent repeatedly on each request until the
Remote Frame buffer is subsequently deactivated.

• The second is when a remote frame is to be sent to pick up some data.

Both use the generic fnWrite() with the following parameters in the length field:

unsigned char ucTestMessage[] = {1,2,3,4,5,6,7}; // test message

if (fnWrite(CAN_interface_ID, ucTestMessage,

 (sizeof(ucTestMessage) | TX_REMOTE_FRAME)) != sizeof(ucTestMessage)) {

 // Error. Eg. no transmission buffer free

 //

}

This example shows data being queued to be sent, but only on request by a Remote Frame.

Note that the data will be transmitted as long as the buffer remains valid and so can be sent
a multiple number of times without writing the data again. If you would like a notification once
the data has been sent for the first time, use the flag CAN_TX_ACK_ON in the length field. To

stop the Remote data message call fnWrite() with just TX_REMOTE_STOP in the length field

and a null pointer in the data field, which will convert the transmission buffer back to a normal
transmission buffer.

When a transmission buffer is being used as a Remote Frame transmission buffer, it is not
available for normal data transmission. Only one of the specified transmission buffers will be
used on request as a Remote Frame buffer at any one time. If further data is written for
Remote Transmission it will overwrite an existing Remote Frame transmission buffer, thus
modifying the data sent in response to a Remote Frame.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 13/21 9.3.2014

This following example shows a Remote Frame being sent to the default destination ID,
meaning that the pick-up mail box at the destination will be collected:

if (fnWrite(CAN_interface_ID, 0, 0) == 0)) {

 // Error. Eg. no transmission buffer free

 //

}

If a specific destination ID is required for this Remote frame then this is possible as follows:

unsigned char ucID[] = {0x00,0x01,0x02,0x03}; // remote ID

if (fnWrite(CAN_interface_ID, ucID, SPECIFIED_ID) == 0)) {

 // Error. Eg. no transmission buffer free

 //

}

The transmission of a Remote Frame is rather special since the transmission buffer used to
send the Remote frame is subsequently used as a temporary receive buffer to accept the
requested data. Assuming that the Remote Frame transmission was successful and the
corresponding data is received, the fact is signalled by an interrupt event of the type
CAN_RX_REMOTE_MSG. In this case the data can be collected by using the normal

fnRead() call. If it should prove necessary to be sure that the data read is the response

from the Remote Frame and not another data reception occurring at the same moment in
time it can be selectively collected by specifying GET_CAN_RX_REMOTE in the length field.

The fact that the temporary Remote Frame reception buffer has been read by the application
frees it and converts it back to a free transmission buffer as it was before the Remote Frame
was sent.

Normally the answer to the Remote Frame transmission will be received immediately
however it is not guaranteed that there will be an answer to the Remote Frame transmission.
If the other node has not prepared data for the transfer it will never take place. In this case
the CAN buffer will remain in the reception state indefinitely. The controlling software should
thus convert the buffer back to its original free transmission state once it has detected that
there will be no reception by reading it with the FREE_CAN_RX_REMOTE flag set which will

then convert it for further transmission use. (It’s probably best to use a short timer to signal
that there has not been a response in an acceptable period of time and then clear as
described).

Note that not all hardware implementations allow sharing hardware buffers for transmission
and reception use. The software driver layer ensures compatibility at the hardware
application interface, whereby having a remote transmission buffer pending may not
physically be using and blocking a reception buffer if the implementation can’t use this
technique.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 14/21 9.3.2014

8. CAN Monitoring and Simulation

In order to monitor the activity on a CAN bus a CAN analyser is usually used which can
interpret and display the individual messages being exchanged. For developing and
debugging, the additional capability of generating CAN data or acknowledging CAN data on
the bus (acting as an active receiver) can be useful.

The µTasker simulator integrates support for such a CAN analyser which also gives the
ability to connect the µTasker simulator to the CAN bus via the analyser in order to transmit
data to the physical network and to receive data from it. This allows the µTasker simulator to
act as a real node in a CAN bus system, simplifying development and debugging work during
projects with CAN.

The CAN analyser chosen for this job is the KOMODOTM CAN DUO from TOTAL PHASE,
Inc. http://www.totalphase.com/products/komodo_canduo/

This analyser supports 2 independent CAN interfaces allowing the traffic on two CAN buses
to be monitored in parallel. It also allows the µTasker simulator to interact with up to two CAN
controller interfaces at the same time.

Before explaining the µTasker simulator it is useful to first look at how the KOMODOTM CAN
DUO operates:

It is a USB powered device which is connected to a PC via a USB cable. The USB
connection has two ports (port 0 and port 1) which allows two applications on the PC to work
with the device at the same time, sharing the single cable and USB connection. The analyser
is equipped with two CAN channels (CAN A and CAN B), allowing up to two applications on
the PC to work with up to two CAN nodes (or CAN buses) at the same time. This is illustrated
in the figure below whereby one PC application is displayed as a CAN monitor (TOTAL
PHASE supplies the Komodo GUI for this purpose) on one CAN bus and the other as the
µTasker simulator. Two CAN interfaces are shown for a microcontroller with 2 CAN
controllers; when only one CAN controller is available or only one is used, only one of the
CAN interfaces will be active.

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 15/21 9.3.2014

Development PC

KOMODOTM CAN DUO

CAN BUS A

CAN bus nodes

CAN BUS B

CAN bus nodes

BA

USB connection

USB Port 0 USB Port 1

This particular usage configuration allows the µTasker simulator to interface to two CAN
buses (the embedded application interacts with two CAN controllers) so that the embedded
application can be developed, tested and debugged. The KOMODO GUI is used as a CAN
analyser monitoring the traffic one of the buses to verify the system operation.

When the KOMODOTM CAN DUO is to be used for CAN interface simulation, the project
define SIM_KOMODO needs to be activated and the USB port used for communication

specified:

#define KOMODO_USB_PORT 1 // use this USB port (0 or 1) – any additional

 monitor program sharing the Komodo can use

 the other port

When the embedded project code opens the CAN interface (see the fnOpen() command

description earlier in this document) it will also open a connection to the KOMODOTM CAN
DUO on the specified USB port, whereby CAN controller 0 will use the CAN A interface and
CAN controller 1 will use the CAN B interface. The activity light will be enabled on the

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 16/21 9.3.2014

corresponding CAN interface to show that the connection has been established. When the
simulator is terminated normally (using the exit command) the USB port will be terminated
and the interfaces deactivated (the lights will no longer be on). Stopping the µTasker
simulator by terminating debugging will leave the activity lights enabled but the USB port will
still be terminated after a short delay by Windows during clean-up work.

When the embedded application running in the µTasker environment sends to the CAN
interfaces the messages are sent to the corresponding physical CAN bus. Receptions from
the CAN bus that match the CAN controller configuration will be received by the embedded
application.

If the KOMODOTM CAN DUO is not connected when the µTasker simulator is operated the
USB port will not be able to be opened and so no physical CAN operation will take place but
the general operation of the simulator is otherwise not disrupted.

Since the µTasker simulator will be using the specified USB port during operation in CAN
based projects the KOMODO GUI will not be able to use this port; the fact that the port is in
use is also displayed by the connect dialogue:

In this instance Port 1 is displayed a red (in use) and so the user needs to connect the
monitor to Port 0 instead, which is free as displayed by the blue signal.

The KOMODO GUI user’s guide explains all details concerning its use:
http://www.totalphase.com/download/pdf/komodo-gui-v1.20.pdf

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 17/21 9.3.2014

9. Testing CAN Operation in the µTasker Project

When CAN operation is enabled in the µTasker project a test interface is activated in the file
can_tests.h and a CAN menu is available on the command line interface.

Can_tests.h is a part of the application task, specifically handling the reception of CAN
interrupt messages. It handles the CAN events types and displays corresponding details:

• CAN_TX_REMOTE_ERROR

• CAN_TX_ERROR

• CAN_OTHER_ERROR

• CAN_TX_ACK

• CAN_TX_REMOTE_ACK

• CAN_RX_REMOTE_MSG

• CAN_RX_MSG

The CAN commands can all be executed from the command line menu (on the serial
interface, TELNET or USB CDC, depending on which is available and presently active).

 CAN commands

===================

up go to main menu

can Send to default [ch] <data hex>

can_s Send to id [ch] <id> <data hex>

can_e Send to ext. id [ch] <id> <data hex>

can_r Request remote default [ch]

can_rs Request remote id [ch] <id>

can_re Request remote ext. id [ch] <id>

can_f Free remote rx when no response

can_d Deposit remote message [ch] <data hex>

can_c Clear remote message [ch]

help Display menu specific help

quit Leave command mode

If no CAN channel is specified the default channel 0 is used. The following are examples of
use:

can 1 1122334455 sends the message 0x11, 0x22, 0x33, 0x44, 0x55 to the

default destination on CAN channel 1

can_s 0 123 442277 sends the message 0x44, 0x22, 0x77 to the standard ID

0x123 on CAN channel 0

can_e 123abc 7722 sends the message 0x77, 0x22 to the extended ID 0x123abc

on CAN channel 0

can_r 1 requests a remote frame from the default destination on CAN channel 1

can_rs 0 9a requests a remote frame from the standard ID 0x9a on CAN channel 0

can_re 16ff9a requests a remote frame from the extended ID 0x16ff9a on CAN

channel 0

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 18/21 9.3.2014

can_f 1 frees the message buffer on CAN channel 1 that is waiting for a response to a

transmitted request frame that didn’t arrive

can_d deposits a remote response in the output mailbox of CAN controller 0 which will

be sent automatically when a remote request is received. This will be sent a multiple
number of times until cancelled by the can_c command. A repeat of the command can

be used to change the message content.

Note also that there will be a CAN_TX_REMOTE_ACK event received when the remote

mailbox is retrieved by any CAN node on the first retrieval only.

can_c 0 clears the output mailbox of CAN controller 0 so that remote receptions no

longer cause a transmission.

When port/external interrupt are enabled test CAN messages are sent when input edges are
detected (or when buttons on particular boards are pressed/released). This allows for simple
transmission tests.

For the inputs used see the file Port_Interrupts.h, where #define IRQ_TEST needs

to be enabled. The call fnSendCAN() is called on certain events.

10. Conclusion

This document has given a brief introduction to CAN and described the µTasker driver
interface for embedded projects using CAN enabled processors.

The µTasker simulator support for the KOMODOTM CAN DUO, allowing interfacing the
simulation environment to up to two physical CAN buses, has been explained as well as how
to verify the CAN operation in the µTasker project.

Additional hardware dependent details concerning CAN enabled processors can be found in
the appendix.

Modifications:
V0.01 18.07.2006: Initial version
V0.02 27.12.2011: Revised version with new simulation interface and hardware appendix
V1.00 31.12.2011: Added can_f command and released

V1.01 4.3.2014: Add xbCAN details

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 19/21 9.3.2014

Appendix A – Hardware Dependencies

a) FlexCAN

The Freescale Coldfire and Kinetis processors use the FlexCAN controller. Each controller
manages 16 individual CAN buffers which can be used for either transmission or reception.
These message buffers are contained in the memory of the CAN controller and each has the
following construction:

 unsigned long ulCode_Len_TimeStamp;

 unsigned long ulID;

 unsigned char ucData[8];

The first long word field contains a code informing of the present buffers use (eg. as
reception or transmission buffer) and state (eg. whether empty, busy or full), and a data
length and is filled with a time stamp when operation takes place.

The ID field is used to specify the destination ID when used as a transmission buffer.

The 8 byte data array is used to hold transmission data for the CAN controller to save
reception data to.

Each CAN controller has a 16 bit timer which runs at the bit rate speed of the CAN bus. This
is used for setting time stamps on reception and transmission.

Transmission involves using a free buffer and writing the data content and ID fields, followed
by setting the code field to signal that the content should be sent (activation of the message
buffer). The CAN controller then performs transmission, including retried in case of collisions.
The time-stamp and code field is updated accordingly and an interrupt generated if enabled
so that the driver can verify that there were no errors and inform the application if required.

The FlexCAN is clocked from either an internal bus clock or directly from an oscillator input
signal. When possible the oscillator is preferred since it tends to have lower jitter than
internal bus clocks generated using PLL.

Kinetis users should note that the CAN controller only works in early silicon versions when
the system oscillator is enabled. The following define can be enabled in
app_hw_kinetis.h when it is sure that the devices used do not suffer from this problem,

otherwise the use of CAN in a project will automatically cause the system oscillator to be
enabled.

#define ERRATA_E2583_SOLVED // in early silicon the CAN controllers only work

 when the OSC is enabled (enable if the chip

 revision used doesn't suffer from the problem)

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 20/21 9.3.2014

b) bxCAN

ST-Micro STM32 devices contain a bxCAN module with two CAN interfaces. CAN 1 is a
master CAN controller and CAN 2 is a slave. The only real difference between the master
and slave is that the master module controls a bank of filters used by both the master and
the slave. When the slave is not used the master could make use of the complete 28 filter
banks available for its own purposes. When the slave is used it shares these with the master,
whereby the amount of filter banks used by each is configurable.

Each CAN interface of the bxCAN has a number of configurable interface pins for CAN use
and so is flexible as to how the CAN lines are routed to the chip.

The CAN transmitter has 3 dedicated mailboxes. When one of them is in use the other ones
can be prepared for following messages (transmission order of messages is based on ID
priority). Further transmissions can be prepared as long as one of the three buffers is free or
as soon as one becomes free again. (Compare with the FlexCAN which has a pool of buffers
that can be shared for transmission and reception use).

The CAN receiver has two FIFOs, each or 3 messages in depth. The FIFOs are controlled
fully in hardware. There is a bank of 28 filters (depending on exact configuration, each could
be used to filter two IDs). The µTasker driver uses these as 14 ID filters for CAN1 and 14 for
CAN 2 reception. When configuring the CAN interface the user can thus define up to 13
buffers (virtual channels) for reception (one is reserved for remote message use as
described later), whereby these buffers are in fact essentially ID filters sharing the two
receiver FIFOs.

The ID mask is also used to define a group of IDs that are accepted in case the reception is
not restricted to a single ID value (either standard or extended).

Each of the filters allows an ID to be defined for each virtual channel which is used for
matching the reception ID and also allocating the filter channel to one of the two available
FIFOs. The FIFO is allocated to FIFO 0, then FIFO 1, and then FIFO 1 - alternating as each
virtual channel is configured. For example, if a single ID is configured on 3 virtual channels it
means that there are 3 filter banks set up for this same ID, the first using FIFO 0, the second
FIFO 1 and the third FIFO 0 again. The result is that three messages for the ID received very
quickly would be saves in FIFO 0, FIFO1 and then FIFO 0 again (there would be one
message waiting in FIFO 1 and 2 in FIFO 0, remembering that each is three messages
deep).

Each time the reception interrupt is handled the new FIFO content is immediately extracted
to a temporary message buffer, thus clearing the FIFO as quickly as possible so that it can
be used for following messages. The message is then matched to the virtual channel that the
filter belongs to and the temporary content put into a dedicated message buffer belonging to
this channel. This buffer is then marked as owned by the channel until it is read and freed,
after which it can be used for further receptions to it. By assigning multiple buffers for a single
channel allows this many buffers to contain waiting messages without the input FIFO having
to be blocked and risking overrun to this virtual channel and others too. (Compare with the
FlexCAN reception buffers which are blocked until the user has read the message and the
buffer is read and returned to the receiver buffer pool).

The bxCAN’s reception filter bank is very flexible but the driver choses a subset of its
configuration possibilities to allow it to be easily managed. This configuration is shown in the
following diagram, along with the method that is used to respond to remote frames. When a
remote message is prepared it is set to the channel’s transmit buffer, which is marked as “in
use” but no transmission is started yet. The final filter in the CAN controller’s bank (reserved
for this use) is configured to accept the remote ID. Each time a remote request is received on
this ID the transmit buffer is set to transmission state so that an immediate response is

www.uTasker.com µTasker – CAN

uTaskerCAN.doc/1.01 21/21 9.3.2014

returned. Repeated remote request receptions result in the response being returned each
time.

When the remote message is removed, the reserved transmit buffer is freed so that it can be
used for normal message transmission again. Also the final filter in the bank is disabled so
that it no longer accepts the remote ID.

Transmit
buffers

14 Filter banks per CAN controller

Receive
FIFOs

0 1

0-0 0-1 1-0 1-1 2-0 2-1 3-0 3-1 4-0 4-1 5-0 5-1 6-0 6-1

Bank number-FIFO

Bank
number * 2
+ FIFO

0 1 2 3 4 5 6 7 8 9 10 11 12 13

CAN 1 Master

Receive
FIFOs

0 1

7-0 7-1 8-0 8-1 9-0 9-1
10-
0

10-
1

14 15 16 17 18 19 20 21 22 23 24 25 26 27

CAN 2 Slave

11-
0

11-
1

12-
0

12-
1

13-
0

13-
1

Remote
(disabled)

Remote
(enabled)

0 1 2
Transmit
buffers

0 1 2

Remote
message

Remote request
causes transmission
of prepared remote
message

The diagram shows that the filter bank is divided in to two halves. The first for use by the
master CAN and the second for use by the slave CAN.

The filters are used in 32 bit masked mode, with each filter alternating between FIFO 0 and
FIFO 1 use. This results in each filter being numbered in the hardware as shown. The
software simply converts the reported reception bank number to a unique filter number by
multiplying the filter bank number by 2 and adding its FIFO number (0..27 results).

As can be seen, the filters 13 and 27 are reserved for remote frame reception ID use. The
diagram shows the master not having prepared a remote frame for transmission and so filter
13 is disabled and all three transmit buffers are used normally. The slave CAN has a remote
message prepared in one of its transmit buffers (the one used depends on the channel
configuring it and on availability when configuring) and so filter 27 has been enabled for
remote request reception. Matching receptions on the enabled remote request ID cause the
waiting remote message to be transmitted. Since the remote filters are fixed at 13 and 27,
depending on the CAN controller in question, it is also simple to recognise when a remote
message is to be released.

