
Embedding it better...

µTasker Document

µTasker – Hardware Timers

uTaskerHWTimers.doc/1.10 Copyright © 2020 M.J.Butcher Consulting

www.uTasker.com µTasker – Hardware Timers

Table of Contents
1. Introduction ... 3
2. Timer Control Interface .. 3
3. Configuring a Single-Shot Time Delay .. 4
4. Configuring a Periodic Interrupt ... 5
5. Configuring a Pulse-Width-Modulation Signal on a Timer Output Pin 6
6. Configuring a Timer with external Clock Input .. 7
7. Measuring a PWM Input ... 9
8. Input Capture ... 12
9. Conclusion .. 13
 ... 13
 Appendix A – List or Processors and Timer Modules Supported ... 14
 Appendix B – Examples of Single-Shot Interrupt Delays ... 15
 Appendix C – Examples of Periodic Interrupts ... 16
 Appendix D – Examples of Generating PWM Signals .. 17

uTaskerHWTimers.doc/1.10 2/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

1. Introduction

Processors generally contain a number of timers. These are used, for example, to generate
periodic interrupts, delays, frequencies or pulse-width-modulation signals; for counting
external events or measuring periods of external signals.

The capabilities and use of such timers can vary greatly depending on the processor type.

This document describes the HW timer interface in the µTasker project which aids in simple
control of such timers is a generic manner. Much of the timers’ capabilities can also be
simulate in the µTasker simulator, making the verification of new configurations and timer
behaviour possible in user projects.

2. Timer Control Interface

The µTasker project uses a common interface for the control of various interrupt capable
peripherals.

fnConfigureInterrupt(*void)

The timer control is a particular case of using this interface and its use will be further detailed
in the following sections.

In order to use the hardware timer support the specific hardware module(s) in the processor
should first be activated. See appendix A for a complete list of timer modules supported in
various processor packages.

Most processor types have a general purpose timer module which is activated in
app_hw_xxxx.h (where xxxx is the processor type) by the define SUPPORT_TIMER (or
similar).

Many of the following examples can be found in the µTasker main application in the file
called ADC_Timers.h. This is a header file included by the application task (in application.h)
which can be configured to show various operations (see the local defines such as
TEST_TIMER, TEST_SINGLE_SHOT_TIMER, TEST_PERIODIC_TIMER etc.

Note that this file, ADC_Timers.h, is named nd organised as such due to the fact that HW
timers are also very often used for controlling the sampling of ADCs, whereby the ADC and
timer interfaces work together.

uTaskerHWTimers.doc/1.10 3/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

3. Configuring a Single-Shot Time Delay

static void fnConfigure_Timer(void)
{
 static TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters

 timer_setup.int_type = TIMER_INTERRUPT;
 timer_setup.int_priority = PRIORITY_TIMERS;
 timer_setup.int_handler = timer_int;
 timer_setup.timer_reference = 2; // timer channel 2
 timer_setup.timer_mode = (TIMER_SINGLE_SHOT | TIMER_US_VALUE); // single shot us timer
 timer_setup.timer_value = 100; // 100µ delay
 fnConfigureInterrupt((void *)&timer_setup); // enter interrupt and start timer
}

This example (for Luminary Micro devices) shows a timer being configured to generate an
interrupt after a delay of 100µs. It uses a general purpose timer, whereby channel 2 is used
for the delay. When the single-shot timer fires the interrupt call-back timer_int(void) is
called from within the timer interrupt routine.

static void __callback_interrupt timer_int(void)
{
 TOGGLE_TEST_OUTPUT();
 fnConfigure_Timer();
}

This example interrupt routine is toggling an output (for visibility) and restarting a further
single-shot hardware timer.

Note that the user interrupt handler doesn’t need to reset any hardware flags since the driver
interrupt handler is responsible for this work. The user must however be aware that the code
is running in a sub-routine to the timer interrupt handler and so should generally be kept as
short as possible. It is typical for such routines to send an event to a task so that extra work
can be triggered (eg. fnInterruptMessage(OWN_TASK, TIMEDELAY_1);).

The timer module will generally be set to low power mode (power down or similar) after a
single-shot timer has fired, in order to optimise power requirements when the timer is no
longer in use.

See Appendix B for further examples of generating a single-shot interrupt delay for various
processor types and using various timer modules in the processors.

uTaskerHWTimers.doc/1.10 4/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

4. Configuring a Periodic Interrupt

Periodic interrupts can be configured by using the same interface as for single-shot
interrupts, but rather than setting the single shot mode a period mode is set.

static void fnConfigure_Timer(void)
{
 static TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters

 timer_setup.int_type = TIMER_INTERRUPT;
 timer_setup.int_priority = PRIORITY_TIMERS;
 timer_setup.int_handler = timer_int;
 timer_setup.timer_reference = 2; // timer channel 2
 timer_setup.timer_mode = (TIMER_PERIODIC | TIMER_US_VALUE); // single shot us timer
 timer_setup.timer_value = 100; // 100µ delay
 fnConfigureInterrupt((void *)&timer_setup); // enter interrupt and start timer
}

This example is equivalent to that in the previous section but with TIMER_SINGLE_SHOT
replaced by TIMER_PERIODIC.

A periodic timer can be stopped by calling the interface with the mode set to TIMER_STOP.

See Appendix C for further examples of generating a periodic interrupt for various processor
types and using various timer modules in the processors.

uTaskerHWTimers.doc/1.10 5/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

5. Configuring a Pulse-Width-Modulation Signal on a Timer Output Pin

It is often possible to generate PWM signals from general purpose timers. Some processors
have, in addition, dedicated PWM modules optimised for this task.

The following example shows two PWM signals (CCP0 and CCP1) being generated from a
single general purpose timer channel on a Luminary Micro device.

static void fnConfigure_Timer(void)
{
 static TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters
 timer_setup.int_type = TIMER_INTERRUPT;
 timer_setup.int_priority = PRIORITY_TIMERS;
 timer_setup.int_handler = 0; // no interrupt
 timer_setup.timer_reference = 0; // timer channel 0
 timer_setup.timer_mode = (TIMER_PWM_B); // generate PWM signal on timer output port
 timer_setup.timer_value = TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1000));// generate 1000Hz
 timer_setup.pwm_value = 20; // 20% PWM (high/low)
 fnConfigureInterrupt((void *)&timer_setup);// enable PWM signal
 timer_setup.timer_mode = (TIMER_PWM_A | TIMER_DONT_DISTURB);
 // now set output A but don't disturb (reset) output B
 timer_setup.timer_value = TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1500));// generate 1500Hz
 timer_setup.pwm_value = 35; // 35% PWM (high/low)
 fnConfigureInterrupt((void *)&timer_setup); // enable PWM signal
}

There is no interrupt involved with a PWM channel and the PWM output runs continuously
until stopped.

The initialisation includes also the configuration of the port output for PWM use.

By recalling the initialisation but with different frequencies or PWM percentage values
(0..100% in steps of 1%) changes to the present setting can be achieved. Whether the
TIMER_DONT_DISTURB flag is used depends on whether a timer reset (takes place when
called without the flag) is desired or not.

The following shows first one channel being stopped (the other will continue to operate) and
then the second channel being disable. In this case, when both channels have been
disabled, the timer channel will be set back to its power-down state to ensure lowest power
consumption when not used.

static void fnStop_PWM(void)
{
 static TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters
 timer_setup.int_type = TIMER_INTERRUPT;
 timer_setup.timer_reference = 0; // timer channel 0
 timer_setup.timer_mode = (TIMER_STOP_PWM_B | TIMER_DONT_DISTURB);
 // stop B but don't disturb A
 fnConfigureInterrupt((void *)&timer_setup); // disable PWM signal

 timer_setup.timer_mode = (TIMER_STOP_PWM_A); // stop A and power down timer module
 fnConfigureInterrupt((void *)&timer_setup); // disable PWM signal
}

uTaskerHWTimers.doc/1.10 6/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

Note that once a PWM channel has been disabled its PWM port output state may not be
defined (resulting in a continuous ‘0’ or ‘1’). It may therefore be necessary to convert the port
back to GPIO use by adding, for example, _FLOAT_PORT(B, PORTB_BIT0); (assuming
the PWM output is on port B-0 and the input floating state is suitable). The state after a
channel power down may also be different to the case of simply disabling a module.

See Appendix E for further examples of generating PWM signals for various processor types
and using various timer modules in the processors.

6. Configuring a Timer with external Clock Input

In some cases it is necessary to count external pulses; for example in order to measure an
external frequency, measure a pulse width, duty cycle or phase between two inputs. This
mode of operation is normally referred to as capture mode.

The following example shows how an input can be configured on the SAM7X for use as clock
and subsequently how the timer counter value is read.

The SAM7X has 3 individual 16 bit timers; there are several pins that can be used by the
timer as outputs or inputs.

TCLK0, TCLK1, TCLK2 – these are inputs (called external inputs – these can be used as
clock inputs)

TIOA0, TIOA1, TIOA2 – these can be inputs or outputs (called internal I/O signals – these
can be used as clock inputs)

TIOB0, TIOB1, TIOB2 – these can be inputs or outputs (called internal I/O signals – these
can be used as trigger inputs but not clock inputs)

The timer counter can be incremented on either the rising or falling edge of the signal.

When an external clock source is selected it can be XC0, XC1 or XC2, where these are
sourced by the following possible combinations:

XC0 can be TCLK0, TIOA1 or TIOA2

XC1 can be TCLK1, TIOA0 or TIOA2

XC2 can be TCLK2, TIOA0 or TIOA1

The maximum frequency of an external signal is 2/5th the master clock.

The timers are flexible so this example is just one of various configurations – it simply
configures the input as clock to the timer counter so that the counter is incremented at the
frequency of the external signal. The counter runs from its initial value of 0x0000 up to a
maximum value of 0xffff. After the value 0xffff is reached it overruns to 0x0000. By reading
the timer counter value at a two instances in time the external frequency (assuming a stable
pulse rate) can be measured. If the timer overflows, an interrupt on the overflow allows the
timer width to be increased by incrementing a further variable (creating a 32 bit timer value).

uTaskerHWTimers.doc/1.10 7/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

static void fnConfigure_Timer(void)
{
 static TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters
 timer_setup.int_type = TIMER_INTERRUPT;
 timer_setup.int_priority = PRIORITY_TIMERS;
 timer_setup.int_handler = fnOverflow; // interrupt handler on overflow
 timer_setup.timer_reference = 0; // timer channel 0
 timer_setup.timer_mode = (TIMER_SOURCE_TCLK0 | TIMER_SOURCE_RISING_EDGE);
 // timer clock input and edge
 fnConfigureInterrupt((void *)&timer_setup); // enable PWM signal
}

This example shows timer 0 being set to be clocked from the TCLK0 input, incremented on
its rising edge. An interrupt handler is specified for timer counter overflows (a value of 0 for
the interrupt handler lets the timer overflow without generating an interrupt).

The possible timer sources are (only one may be defined)

TIMER_SOURCE_TCLK0
TIMER_SOURCE_TCLK1
TIMER_SOURCE_TCLK2
TIMER_SOURCE_TIOA0
TIMER_SOURCE_TIOA1
TIMER_SOURCE_TIOA2

It is possible to define the same source for more than one timer. The user must however be
aware that not all source combinations are possible – for example if TCLK0 and TCLK1 are
used by two timers, the third timer cannot use TIOA2 (this is because the external signals
XC0 and XC1 have been allocated and TIOA2 is not available via XC2. If this were
attempted no clock would be connected. Furthermore, since the allocation of TIOA inputs
can be from two possible XC sources the allocation priority is defined as:

1)TIOA0 will be taken from XC1, if available. If not it will be taken from XC2

2) TIOA1 will be taken from XC2, if available. If not it will be taken from XC0

3) TIOA2 will be taken from XC0, if available. If not it will be taken from XC1

Calling fnConfigureInterrupt((void *)&timer_setup) with
timer_setup.timer_mode = TIMER_ DISABLE; will disable the timer (power down)
and also disconnect its source. This pin will however be left configured as timer input so will
need to be reconfigured if required for a different function afterwards.

Assuming that the overflow interrupt is incrementing a variable called usCounterOverflow a
32 bit timer value can be read by performing

 ulCounter = (_COUNTER_VALUE(0) + (usCounterOverflow << 16));

This shows the macro _COUNTER_VALUE() which is used for direct timer counter register
access.

uTaskerHWTimers.doc/1.10 8/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

7. Measuring a PWM Input

Some sensors deliver their output value as a PWM signal. For example, 100% mark-space-
ratio of a 20kHz square wave may represent 20mA output, 0% mark-space-ratio of the same
frequency may represent 0mA and 50% mark-space-ratio 10mA. The exact mark-space-ratio
being proportional to the output value of the sensor's output range.

The advantage of this solution is that it is digital and so robust when there is possible noise
and interference; the frequency itself is not critical and can fluctuate because it is not the
frequency but its mark-space that is of importance; the value repeats and so a measurement
can be performed over multiple cycles to filter out any fluctuations or interference.

The possible disadvantage is that it may not always be simple to use a hardware time to
perform the measurement.

The following represents a reference method of performing the measurement when there is a
hardware timer available that includes a gated input to a counter. Afterwards a further
technique is show that can be used by processors that allow DMA transfers to be triggered
by edges on input pins (such as various Kinetis parts).

Consider the use of a simple AND gate in the diagram above. Using a reference clock on
one input and the PWM signal to be measured on the other, the AND gate gates the
reference clock through to its output only when the PWM signal is at a logic '1' state.

The reference clock frequency should be a lot higher than the PWM frequency so that it is
easy to distinguish how many of its cycle are passed through each time the PWM input is
high.

If the gated output is used as the input to a counter it counts the number of reference clock
cycles that are passed through during a certain period of time and, since the number of
periods of the reference clock are know during the measurement period, the PWM can be
calculated by the formula

((Gated clock pulses during period / Reference clock pulses during
period) x 100)%

The measurement relies on the reference clock frequency being known accurately and also
the measurement period being exact but can be improved to be less sensitive of the exact
period if the reference clock pulses can be counted at the same time.

uTaskerHWTimers.doc/1.10 9/23 23/09/20

PWM Input

Reference
Clock

&

Gate

www.uTasker.com µTasker – Hardware Timers

For highest accuracy the period of the measurement needs to be much longer than a PWM
period and the reference frequency needs to be much higher than the PWM frequency. If it is
possible to synchronise the start and top of the measurement period with a multiple of PWM
cycles the accuracy is improved over shorter measurement periods.

The accuracy that is possible thus depends on the PWM frequency itself, the period that can
be used for the measurement (effectively its sample frequency) and any tricks that the HW
timer being used may allow to synchronise the measurement.

Note that when multiple PWM inputs are to be measured each one requires its own gate and
counter.

The following PWM measurement illustrates how port triggered DMA transfers can allow a
single HW counter to be used to measure a PWM signal with high accuracy.

The port is configured to trigger a single DMA transfer on each input edge of the PWM input.
Each trigger causes a transfer of the momentary reference clock counter value to a location
in RAM, which increments after each transfer. The measurement is complete after a
predefined number of transfers has been triggered or if a period expires (eg. when there is
no PWM input frequency available or it is signalling 0% (continuous '0') or 100% (continuous
'1').

After the period has expired the RAM buffer contains a number of time stamps (with
reference clock resolution) for each PWM input '0' to '1' and '1' to '0' changes (edges). Based
on the time stamps, the '1' and '0' durations can be calculated over one or more input cycles,
whereby fast sampling is possible when just a small number of input periods are required.

There is one complication involved due to the fact that it is imperative to know whether the
initial transfer was due to a falling or rising input edge, otherwise the PWM value calculated
will be incorrect (99.9% mark-space-ratio could be misinterpreted as 0.1% if the polarity were
not known accurately!).

uTaskerHWTimers.doc/1.10 10/23 23/09/20

PWM Input

Reference
Clock

Counter

RAM buffer

DMA

Port with DMA
trigger capability

www.uTasker.com µTasker – Hardware Timers

A technique to allow the initial state to be reliably determined is shown in the flow diagram
below:

As long as multiple ports can be used to trigger the same procedure on multiple DMA
channels a single hardware counter can be shared by all measurements.

uTaskerHWTimers.doc/1.10 11/23 23/09/20

Enable Interrupts

T
hi

s
tim

e
is

m
uc

h
sh

o
rt

e
r

th
an

a
P

W
M

 in
pu

t p
er

io
d

Input 1 ==
Input 2?

Initial state = Input 1

Yes No

Yes

No

Initial state = Input 2

DMA transfer
taken place?

Configure measurement

Disable Interrupts

Read port input state 1

Start measurement

Read port input state 2

www.uTasker.com µTasker – Hardware Timers

8. Input Capture

Hardware timers often have the ability to capture their present counter value when triggered
by an external event, such as the falling edge on an input.

The following shows how channel 1 of FlexTimer/TPM in a Kinetis device is used to capture
on each falling edge on its dedicated timer input pin (FTM0_CH1):

 static TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters
 timer_setup.int_type = TIMER_INTERRUPT;
 timer_setup.int_priority = PRIORITY_TIMERS;
 timer_setup.int_handler = timer_int;
 timer_setup.timer_reference = 0; // timer 0
 timer_setup.capture_channel = 1; // channel 1
 timer_setup.capture_prescaler = 128; // 1, 2, ..128 possible
 timer_setup.timer_mode = (TIMER_CAPTURE_FALLING);// capture interrupt on falling edge
 fnConfigureInterrupt((void *)&timer_setup); // enter interrupt for timer test

In this example timer 0 free-runs, clocked from its defined source and with a pre-scale divider
of 128. A capture takes place when a falling edge if detected on the timer input for channel 1,
causing the timer's present count value to be latched to a dedicated internal register. A user
interrupt call-back is also defined to be called by an interrupt resulting from this event; an
example of such a callback is shown below:

static __callback_interrupt void timer_int(void)
{
 static volatile unsigned short usLastCapture = 0;
 usLastCapture = CAPTURE_VALUE(0, 1); // update the last capture value
 TOGGLE_TEST_OUTPUT();
}

In this reference the present capture value is copied to a local variable and an output is
toggled to better visualise the event taking place. The macro used to read the captured value
from the internal capture register is hardware specific and in the case of the Kinetis parts it
directly accesses the 16 bit capture register associated with channel 1 of FlexTimer 0.

uTaskerHWTimers.doc/1.10 12/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

9. Conclusion

This document has discussed various hardware timer uses, how frequencies and PWM
signals can be generated, as well as the hardware timer interfaces in the µTasker project.

A section also discusses practical methods of using hardware time capabilities to measure
PWM inputs.

Various processor specific details are included in the appendixes.

Modifications:

- V0.01 29.8.2009: First preliminary version with only Luminary Micro specific use

- V0.02 14.1.2010: Add SAM7X PWM details in appendix D

- V0.03 10.3.2010: Add external counter mode

- V0.04 1.1.2011: Add LM3Sxxxx PWM details in appendix D

- V0.05 2.02.2012: Add Kinetis PWM from FlexTimer in appendix D

- V0.06 6.05.2014: Add Kinetis and Coldfire V2 supported modules in appendix A and
further examples of single-shot, period and PWM use for Freescale processors.

- V0.0710.2016: Add PWM measurement.

- V0.08 21.08.2018: Added interrupt call-back to Kinetis PWM mode reference.

- V0.09 27.08.2018: Added input capture chapter.

- V1.10 23.09.2020: Added square wave output option to Kinetis and i.MX RT period
interrupt from its general purpose timer module (FlexTimer/TPM/GPT).

uTaskerHWTimers.doc/1.10 13/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

Appendix A – List or Processors and Timer Modules Supported

Note that Cortex processors have a SYSTICK timer that the µTasker OS usually uses for its
system Tick, which means that other HW timers are free for application use.

Kinetis

Single-shot Periodic PWM Notes
PIT
(Periodic
Interrupt
Timer)
32 bit timers

Yes Yes No
(no output)

KL devices have typically
2 PIT channels; K devices
have typically 4 PIT
channels.

FlexTimer
16 bit timers

Yes
(One per

FlexTimer)

Yes
(One per

FlexTimer)

Yes
(2 to 8

outputs for
each

FlexTimer
module)

K devices – usually there
are 2 to 4 FlexTimers
A single FlexTimer has
between 2 and 8
channels. Frequency of all
channels of each
FlexTimer module are
shared.

TPM
16 bit timer

Yes
(One per

FlexTimer)

Yes
(One per

FlexTimer)

Yes
(2 to 8

outputs for
each

FlexTimer
module)

KL devices (very similar to
FlexTimer)

Coldfire V2

Single-shot Periodic PWM Notes
PIT
(Periodic
Interrupt
Timer)
16 bit timers

Yes Yes No
(no output)

2 to 4 PITs available,
depending on device,
whereby PIT0 is usually
used by the µTasker OS
Tick

DMA
Timers
32 bit timers

Yes Yes No
(no output)

4 DMA timers available

GPT
16 bit timer

No No No 4 channels
Input capture function and
can be used for positive or
negative edge interrupt

PWM
Module
8 bit timer

No No Yes 8 channels

uTaskerHWTimers.doc/1.10 14/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

i.MX RT

Single-shot Periodic PWM Notes
PIT
(Periodic
Interrupt
Timer)
32 bit timers

Yes Yes No
(no output)

4 PIT channels.

GPT
32 bit timer

Yes Yes Square
wave output

only

General timer interface
compatible with Kinetis
FlexTimer/TPM general
timer interface.
Input capture function and
can be used for positive or
negative edge interrupt

uTaskerHWTimers.doc/1.10 15/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

Appendix B – Examples of Single-Shot Interrupt Delays

Kinetis K/KL PIT, Coldfire V2 and i.MX RT

PIT_SETUP pit_setup; // interrupt configuration parameters
pit_setup.int_type = PIT_INTERRUPT;
pit_setup.int_handler = test_timer_int; // test a single shot timer
pit_setup.int_priority = PIT1_INTERRUPT_PRIORITY;
pit_setup.count_delay = PIT_US_DELAY(3245); // 3245us delay
pit_setup.mode = PIT_SINGLE_SHOT; // one-shot interrupt
pit_setup.ucPIT = 1; // use PIT1
fnConfigureInterrupt((void *)&pit_setup); // enter interrupt for PIT1

Kinetis K/KL FlexTimer / TPM, i.MX RT GPT – general timer interface

TIMER_INTERRUPT_SETUP timer_setup; // interrupt configuration parameters
timer_setup.int_type = TIMER_INTERRUPT;
timer_setup.int_priority = PRIORITY_TIMERS;
timer_setup.int_handler = timer_int;
timer_setup.timer_reference = 0; // FlexTimer/TPM channel/GPT 0
timer_setup.timer_mode = (TIMER_SINGLE_SHOT); // period timer interrupt
timer_setup.timer_value = TIMER_US_DELAY(100); // single-short 100us
fnConfigureInterrupt((void *)&timer_setup); // enter and start timer

i.MX RT Options:
timer_setup.timer_mode = (TIMER_PERIODIC | TIMER_USES_PRESCALER);
allows a further input clock prescaler value to be passed (when not used the prescaler is 1)
timer_setup.prescaler = 1372; // range 1..4096

Coldfire V2 DMA Timer

DMA_TIMER_SETUP dma_timer_setup; // interrupt configuration parameters
dma_timer_setup.int_type = DMA_TIMER_INTERRUPT;
dma_timer_setup.int_handler = DMA_timer_int;
dma_timer_setup.channel = 1; // DMA timer channel 1
dma_timer_setup.int_priority = DMA_TIMER1_INTERRUPT_PRIORITY;
 // define interrupt priority
dma_timer_setup.mode = (DMA_TIMER_INTERNAL_CLOCK |
 DMA_TIMER_SINGLE_SHOT_INTERRUPT);
dma_timer_setup.count_delay = DMA_TIMER_US_DELAY(1,1,6345);
 // 6345us delay using no dividers
fnConfigureInterrupt((void *)&dma_timer_setup); // enter and start timer

uTaskerHWTimers.doc/1.10 16/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

Appendix C – Examples of Periodic Interrupts

Kinetis K/KL PIT, Coldfire V2, i.MX RT

PIT_SETUP pit_setup; // interrupt configuration parameters
pit_setup.int_type = PIT_INTERRUPT;
pit_setup.int_handler = test_timer_int; // test a single shot timer
pit_setup.int_priority = PIT1_INTERRUPT_PRIORITY;
pit_setup.count_delay = PIT_MS_DELAY(25); // 25ms interrupt
pit_setup.mode = PIT_PERIODIC; // periodic interrupt
pit_setup.ucPIT = 1; // use PIT1
fnConfigureInterrupt((void *)&pit_setup); // enter interrupt for PIT1

To stop a periodic PIT timer pit_setup.mode = PIT_STOP; can be used.

Kinetis K/KL FlexTimer / TPM, i.MX RT GPT – general timer interface

TIMER_INTERRUPT_SETUP timer_setup; // interrupt configuration parameters
timer_setup.int_type = TIMER_INTERRUPT;
timer_setup.int_priority = PRIORITY_TIMERS;
timer_setup.int_handler = timer_int;
timer_setup.timer_reference = 1; // FlexTimer/TPM channel/GPT 1
timer_setup.timer_mode = (TIMER_PERIODIC); // period timer interrupt
timer_setup.timer_value = TIMER_MS_DELAY(150); // 150ms periodic interrupt
fnConfigureInterrupt((void *)&timer_setup); // enter interrupt and start

To stop a periodic timer timer_setup.mode = TIMER_STOP; can be used.

Options:
timer_setup.timer_mode = (TIMER_PERIODIC | TIMER_SQUARE_WAVE);
configures a timer compare output to toggle on each interrupt so that an accurate square
wave is generated at the programmed rate.

i.MX RT Options:
timer_setup.timer_mode = (TIMER_PERIODIC | TIMER_USES_PRESCALER);
allows a further input clock prescaler value to be passed (when not used the prescaler is 1)
timer_setup.prescaler = 1372; // range 1..4096

Coldfire V2 DMA Timer

DMA_TIMER_SETUP dma_timer_setup; // interrupt configuration parameters
dma_timer_setup.int_type = DMA_TIMER_INTERRUPT;
dma_timer_setup.int_handler = DMA_timer_int;
dma_timer_setup.channel = 2; // DMA timer channel 2
dma_timer_setup.int_priority = DMA_TIMER1_INTERRUPT_PRIORITY;
 // define interrupt priority
dma_timer_setup.mode = (DMA_TIMER_INTERNAL_CLOCK |
 DMA_TIMER_PERIODIC_INTERRUPT);
dma_timer_setup.count_delay = DMA_TIMER_MS_DELAY(2,1,15);
 // 15ms delay using /2 pre-scaler
fnConfigureInterrupt((void *)&dma_timer_setup); // enter and start timer

To stop a periodic DMA timer dma_timer_setup.mode = DMA_TIMER_STOP; can be used.

uTaskerHWTimers.doc/1.10 17/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

Appendix D – Examples of Generating PWM Signals

AT91SAM7X – PWM

The SAM7X has a PWM controller with 4 channels. The outputs are called PWM0..PWM3
and each is available on two possible output pins.

In addition to the PWM controller, the general purpose timers can also be used to generate
PWM signals. Only the PWM controller is discussed here.

To enable the PWM controller support in the µTasker project the define
SUPPORT_PWM_CONTROLLER must be set.

The following is an example of using the PWM controller together with the SAM7X. It shows
4 PWM signals being generated, using all 4 PWM channels.

 TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters
 timer_setup.int_type = PWM_CONFIGURATION;
 timer_setup.timer_reference = 2; // PWM channel 2
 timer_setup.int_type = PWM_CONFIGURATION;
 timer_setup.timer_mode = (TIMER_PWM_ALT); // configure PWM signal on alternative PWM2
 output
 timer_setup.timer_value = TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1000));// generate 1000Hz
 on timer output
 timer_setup.pwm_value = _PWM_PERCENT(20, TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1000)));
 // 20% PWM (high/low)
 fnConfigureInterrupt((void *)&timer_setup); // enter configuration for PWM test
 timer_setup.timer_reference = 3;
 timer_setup.timer_mode = (TIMER_PWM); // generate PWM signal on PWM3 output and
 synchronise all PWM outputs
 timer_setup.timer_value = TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1500));
 timer_setup.pwm_value = _PWM_TENTH_PERCENT(706,
 TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1500)));
 // 70.6% PWM (high/low) on different channel
 fnConfigureInterrupt((void *)&timer_setup); // enter configuration for PWM test
 timer_setup.timer_reference = 0;
 timer_setup.timer_mode = (TIMER_PWM_ALT); // generate PWM signal on PWM0
 timer_setup.timer_value = TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(2000));
 timer_setup.pwm_value = _PWM_TENTH_PERCENT(995,
 TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(2000)));
 // 99.5% PWM (high/low) on different channel
 fnConfigureInterrupt((void *)&timer_setup); // enter configuration for PWM test
 timer_setup.timer_reference = 1;
 timer_setup.timer_mode = (TIMER_PWM | TIMER_PWM_START_0 | TIMER_PWM_START_1 |
 TIMER_PWM_START_2 | TIMER_PWM_START_3);
 // generate PWM signal on PWM1 output and synchronise all PWM outputs
 timer_setup.timer_value = TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(3000));
 timer_setup.pwm_value = _PWM_TENTH_PERCENT(25,
 TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(3000)));
 // 2.5% PWM (high/low) on different channel
 fnConfigureInterrupt((void *)&timer_setup); // enter configuration for PWM test

Note the following points:

1) Since the PWM controller is being used, and not a general purpose timer, the
int_type is set to PWM_CONFIGURATION. The TIMER_INTERRUPT_SETUP is
otherwise used as for timer control.

2) timer_reference is used to specify the PWM controller channel (0..3). In the
example all 4 channels are configured.

uTaskerHWTimers.doc/1.10 18/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

3) The primary output pin is used when the mode is set to TIMER_PWM and the
alternative output is used when TIMER_PWM_ALT is set. The primary outputs are
PB19, PB20, PB21, PB22 of the PWM controller channels 0, 1, 2 and 3.
The secondary outputs are PB27, PB28, PB29 and PB30 for the PWM controller
channels 0, 1, 2 and 3.

4) Although the 4 channels are configured independently, their counters are not actually
started until the final channel is configured. All 4 are started using
TIMER_PWM_START_0 | TIMER_PWM_START_1 | TIMER_PWM_START_2 |
TIMER_PWM_START_3, which has the effect of synchronising all 4 channels.

5) To stop channels from operating the mode flags TIMER_PWM_STOP_0,
TIMER_PWM_STOP_1 , TIMER_PWM_STOP_2 and/or TIMER_PWM_STOP_3 can
be used. Should no further channels be running after this command the PWM
controller will be powered down. In the powered down state the settings are however
retained in the PWM module in the SAM7X.

uTaskerHWTimers.doc/1.10 19/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

LM3Sxxxx – PWM

The LM3Sxxxx has optional PWM generators. Each available one has two channel outputs
which are named internally channel A and B for each generator. Externally the naming of the
PWM outputs counts from 0, 1 to the highest one. For example, a device with 2 PWM
generators will have outputs PWM0, PWM1, PWM2 and PWM3, whereby PWM0 and PWM
are channels 0 and 1 of the first generator module and PWM2 and PWM3 are the channels 0
and 1 of the second PWM generator module.

In addition to the PWM controller, the general purpose timers can also be used to generate
PWM signals. Only the PWM controller is discussed here.

To enable the PWM controller support in the µTasker project the define
SUPPORT_PWM_CONTROLLER must be set.

The following is an example of using the PWM controller together with the LM3S8962. It
shows 2 PWM signals being generated, using 2 PWM from 2 generator modules. The
LM3S8962 has 3 PWM modules and can thus generate up to 6 PWM output signals at the
same time.

 TIMER_INTERRUPT_SETUP timer_setup = {0}; // interrupt configuration parameters
 timer_setup.int_type = PWM_CONFIGURATION;
 timer_setup.timer_reference = 2; // PWM channel 2
 timer_setup.int_type = PWM_CONFIGURATION;
 timer_setup.timer_mode = PWM_DIV_1; // don't start yet
 timer_setup.timer_value = PWM_FREQUENCY_VALUE(1000, 1); // generate 1000Hz on timer output
 using PWM clock without divide
 timer_setup.pwm_value = _PWM_PERCENT(20, PWM_FREQUENCY_VALUE(1000, 1));
 // 20% PWM (high/low)
 fnConfigureInterrupt((void *)&timer_setup); // enter configuration for PWM test
 timer_setup.timer_reference = 5;
 timer_setup.timer_mode = (TIMER_PWM_START_2 | TIMER_PWM_START_5 | PWM_DIV_1);
 // generate PWM signal on these outputs
 timer_setup.timer_value = PWM_FREQUENCY_VALUE(1500, 1);
 timer_setup.pwm_value = _PWM_TENTH_PERCENT(706, PWM_FREQUENCY_VALUE(1500, 1));
 // 70.6% PWM (high/low) on different channel

 fnConfigureInterrupt((void *)&timer_setup); // enter configuration for PWM test

Note the following points:

1) Since the PWM controller is being used, and not a general purpose timer, the
int_type is set to PWM_CONFIGURATION. The TIMER_INTERRUPT_SETUP is
otherwise used as for timer control.

2) timer_reference is used to specify the PWM controller channel (0..5). In the
example 2 channels (2 and 5) are configured.

3) The PWM outputs PWM2 and PWM5 are fixed on dedicated outputs, which may
change with different parts. The driver code selects the appropriate peripheral
function for the tested part but this needs to be verified for other parts in case they
need a dedicated port configuration to be added.

4) Although the 2 channels are configured independently, their operation is not actually
started until the final channel is configured. All 2 are started using
TIMER_PWM_START_2 | TIMER_PWM_START_5, which has the effect of (roughly)
synchronising all 4 channels.

uTaskerHWTimers.doc/1.10 20/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

5) To stop channels from operating the mode flags TIMER_PWM_STOP_2 and/or
TIMER_PWM_STOP_5 can be used. Should no further channels be running after this
command the PWM controller will be powered down to save energy.

6) Since PWM0 and PWM1 (PWM2 and PWM3, etc.) are derived from the same PWM
generator with a single 16 bit counter the output frequency must be the same for
these two outputs. The PWM mark/space ration can however be configured
independently. The two outputs are always syhchronised since they are derived from
the same counter.

7) PWM outputs not belonging to the same PWM generator are free to have different
frequencies. The driver doesn’t synchronise the output signals between PWM
generators although the PWM controller in the LM3Sxxxx has some global
synchronisation capabilities.

8) The PWM generator has a high degree of flexibility as to how the PWM signals are
generated. The driver uses one fixed method as follows to generate the signals:
Initially the PWM output signal is at logical level ‘0’.
The PWM counter is loaded with the base frequency value and remains at ‘0’ and
counts down until the count value matches the PWM value for the specific channel (A
or B), at which moment the output is set to logical ‘1’.
The counter continues to count down until it reaches the value 0x0000, at which
moment it is automatically reloaded with the periodic value and the output is reset to
logical ‘0’ again. This results in the configured PWM mark/space value with the ‘1’
phase occurring after the ‘’0 phase (right-aligned).

9) When configuring the PWM frequency and mark/space % value a divider is also
specified. This is a divider to the PWM module which must be the same for all PWM
generators and channels used at the same time. It can have the values 1, 2, 4, 8, 16,
32 or 64, which must also be specified in the mode setting (PWM_DIV_1, PWM_DIV_2,
PWM_DIV_4, PWM_DIV_8, PWM_DIV_16, PWM_DIV_32 or PWM_DIV_64) – if nothing
is specified PWM_DIV_1 is valid.
The PWM generators are therefore clocked by the system clock divided by the PWM
divide value; a divide value of 1 gives the highest frequency and PWM resolutions;
higher divide values allow slower signals to be generated and slightly reduced power
consumption.

uTaskerHWTimers.doc/1.10 21/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

Kinetis – PWM

The FlexTimers in the Kinetis can generate edge-aligned or centre-aligned PWM outputs on
each of their channels. In KL devices the TPM is used instead but the interface is compatible.

To enable the PWM controller support in the µTasker project the defines SUPPORT_TIMER
and SUPPORT_PWM_MODULE must be set, whereby the FlexTimer is used and not a specific
PWM module.

The following is an example of using the PWM controller together with the Kinetis. It shows 2
PWM signals being generated by FlexTimer 0.

 PWM_INTERRUPT_SETUP pwm_setup;
 pwm_setup.int_type = PWM_INTERRUPT;
 pwm_setup.pwm_mode = (PWM_SYS_CLK | PWM_PRESCALER_16); // clock PWM timer from the
 system clock with /16 pre-scaler
 pwm_setup.int_handler = 0; // no interrupt call-back
 pwm_setup.pwm_reference = (_TIMER_0 | 3); // timer module 0, channel 3
 pwm_setup.pwm_frequency = PWM_TIMER_US_DELAY(TIMER_FREQUENCY_VALUE(1000), 16);
 // generate 1000Hz on PWM output
 pwm_setup.pwm_value = _PWM_PERCENT(20, pwm_setup.pwm_frequency); // 20% PWM (high/low)
 fnConfigureInterrupt((void *)&pwm_setup); // enter configuration for PWM test
 pwm_setup.pwm_reference = (_TIMER_0 | 2); // timer module 2, channel 2
 pwm_setup.pwm_mode |= PWM_POLARITY; // change polarity of second channel
 pwm_setup.pwm_value = _PWM_TENTH_PERCENT(706, pwm_setup.pwm_frequency);
 // 70.6% PWM (low/high) on different channel
 fnConfigureInterrupt((void *)&pwm_setup);

Note the following points:

1) The clock source can be from the SYSCLK (as show in the example) or from an
external clock source (PWM_EXTERNAL_CLK instead of PWM_SYS_CLK). When an
external clock is used thevalues passed for the frequency and PWM will depend on
that frequency and so the calculation macros cannot be used.
The clock input used is either from FTM_CLKIN0 or FTM_CLKIN1 depending on the
project define FTM_CLKIN_1. Care should be taken when using an external clock
since the clock pins are multiplexed with the main crystal/clock pins.

2) The behaviour of the Flex Timer counter and its outputs during debugging (BDM
mode) can be defined by the selection of the define FTM_DEBUG_BEHAVIOUR in
app_hw_kinetis.h. It can be allowed to run or stopped and its outputs can be
frozen, continue running or be held in a defined state.

3) All PWM channel outputs from a Flex Timer share the same clock and PWM period.
Only the PWM mark-space values of each can be changed along with polarity.

4) All PWM channels on a single Flex Timer also share the same mode (edge or centre
aligned).

5) All PWM outputs on a single Flex Timer are synchronised according to edge or centre
alignment mode).

6) To disable all PWM outputs the function can be called using pwm_setup.pwm_mode
= 0;

7) An interrupt will be generated on each cycle when pwm_setup.int_handler is not
0 but instead set to a user interrupt call-back function. In this case also
pwm_setup.int_priority should be assigned a suitable interrupt priority.

uTaskerHWTimers.doc/1.10 22/23 23/09/20

www.uTasker.com µTasker – Hardware Timers

The following diagram shows the effect of the polarity and alignment options:

Edge aligned with normal polarity

PWM period
PWM % value

Edge aligned with polarity set

Center aligned with normal polarity

Center aligned with polarity set

uTaskerHWTimers.doc/1.10 23/23 23/09/20

	1. Introduction
	2. Timer Control Interface
	3. Configuring a Single-Shot Time Delay
	4. Configuring a Periodic Interrupt
	5. Configuring a Pulse-Width-Modulation Signal on a Timer Output Pin
	6. Configuring a Timer with external Clock Input
	7. Measuring a PWM Input
	8. Input Capture
	9. Conclusion
	
	Appendix A – List or Processors and Timer Modules Supported
	Appendix B – Examples of Single-Shot Interrupt Delays
	Appendix C – Examples of Periodic Interrupts
	Appendix D – Examples of Generating PWM Signals

