

www.uTasker.com µTasker – Simple I2C support, demo and simulator V1.3

uTaskerIIC.doc/0.02 1/5 24.12.2007

Introduction

The µTasker supports the I2C interface in master mode and is designed for simple control of
local hardware devices such as EEPROM, RTC, Temperature sensor etc. It assumes that
the device is reliably connected and there is no other master on the bus, since it handles
neither bus contention nor error cases. However it offers an easy to use and reliable solution
in the many cases where this is adequate.

Demo example

The µTasker demo project includes simple code to configure the I2C interface and read and
write from / to an I2C EEPROM (24C01). The simulator supports the device so that the user
can observe the way that the code configures and uses the interface, as well as the
simulated device responding to the commands. The methods observed are valid also for
various other typical I2C peripheral devices.

The demo code can be activated by first activating the I2C driver support in config.h
(#define IIC_INTERFACE) and then activating the demo use in application.c (#define
TEST_IIC).

Opening the I2C interface

The code first opens the I2C interface by using the fnOpen command – see
fnConfigEEPROM() in application.c It is suggested to place a break point there in the
simulator and the sequence can be stepped through for thorough understand of the code
involved and even the hardware interface itself.

IICPortID = fnOpen(TYPE_IIC, FOR_I_O, &tIICParameters);

The configuration parameters are passed in the IICTABLE tIICParameters. The port is
opened as an I2C interface and a handle returned [QUEUE_HANDLE IICPortID] which is
later used for all accesses.

www.uTasker.com µTasker – Simple I2C support, demo and simulator V1.3

uTaskerIIC.doc/0.02 2/5 24.12.2007

Reading data from the I2C EEPROM

In the case of the EEPROM it is necessary to first perform a write to the device with the
address of the location to be accessed:

static const unsigned char ucSetEEPROMAddress0[] =
{ADD_EEPROM_WRITE, 0};

fnWrite(IICPortID, (unsigned char *)&ucSetEEPROMAddress0,
sizeof(ucSetEEPROMAddress0));

In this example, the address of the EEPROM on the I2C bus is written along with the
access address. This will cause the device to be addressed on the bus and then the
internal address to be read, with no further data. It serves to set the internal pointer in the
I2C device for later access.

static const unsigned char ucReadEEPROM[] = {16, ADD_EEPROM_READ,
OWN_TASK};

fnRead(IICPortID, (unsigned char *)&ucReadEEPROM, 0);
// start the read process of 16 bytes

Immediately following the write, the user can request a read.

The write and read are performed using interrupts at the driver level and can be queued by
the user by sending the read immediately after the write. In addition, further commands can
also be queued up to the buffer length limit specified in the IICTABLE parameters which were
passed to the fnOpen() call.

The read specifies the number of bytes to be read from the I2C device, the read address of
the device (note that the read address and the write address are specified with the LSB at ‘1’
for a read and ‘0’ for the write, giving 0xa5 and 0xa4 for the 24C01 which is being simulated
in the demo) and the task owning the read. The owner task will then be woken when the read
has terminated – in this case after collecting 16 bytes from the device.

The read length of zero causes the read to be initiated according to the buffer information
rather than retrieval of available data from the queue’s buffer

The µTasker project understands the EEPROM type 24C01 (see the file
\Hardware\IIC_devices\ IIC_dev.c for the internal workings and the devices which
are supported on the simulated I2C bus). This means that each interrupt will be processed
accordingly and once the complete message has been collected, the application task will be
woken. To see this when working with the simulator, set a break point at the following line in
application.c:

while (LengthIIC = fnRead(IICPortID, ucInputMessage,
MEDIUM_MESSAGE)) {

Previous to executing this line due to the task being woken by an interrupt event from the I2C
driver, the input queue contents were checked using:

fnMsgs(IICPortID);

www.uTasker.com µTasker – Simple I2C support, demo and simulator V1.3

uTaskerIIC.doc/0.02 3/5 24.12.2007

This returns the number of received messages, which will be 1 after all 16 defined bytes
have been read. It doesn’t return the number of bytes in the message since this could cause
the input buffer to be incorrectly read before the reception has completed.

Generally the user knows what to expect when reading since the read and its length was
also commanded by the reading task. In this example all available bytes are read from the
input buffer, with the available length being returned into LengthIIC. The demo displays these
by writing them to the debug output (serial port if activated, or Telnet if enabled).

Writing data to the I2C EEPROM

To demonstrate writing data to the EEPROM, two writes are queued. The first writes the byte
0x05 to the EEPROM address 3 and the second several bytes from the EEPROM address 5.
The following shows the write of 8 bytes to the address 5 and subsequent addresses (the
address pointer is automatically incremented in the I2C EEPROM device and this represents
a burst write):

static const unsigned char ucSetWriteEEPROM1[] = {ADD_EEPROM_WRITE,
3, 5};

static const unsigned char ucSetWriteEEPROM2[] = {ADD_EEPROM_WRITE,
5, 3,4,5,6,7,8,9,0xa}; // prepare write
of multiple bytes to address 5

fnWrite(IICPortID, (unsigned char *)&ucSetWriteEEPROM1,
sizeof(ucSetWriteEEPROM1)); // start
single byte write

fnWrite(IICPortID, (unsigned char *)&ucSetWriteEEPROM2,
sizeof(ucSetWriteEEPROM2));

There is no acknowledgement after the writes have been completed (it is assumed that no
writes ever fail due to missing or defective hardware) although a task can be optionally
woken on termination by specifying it in IICTABLE when opening the interface.

Verifying the contents of the simulated I2C EEPROM

The simulated EEPROM device can be viewed as follows:

1. Open the file IIC_dev.c and search for the structure with the name sim24C01.
2. Double click on the structure and then drag it to a watch window.
3. Expand the structure in the watch window to view its control elements and more
importantly the EEPROM content (ucEEPROM) – expanding this after the write has been
performed shows that the contents are as expected. Subsequent reads from the EEPROM
would then read the present values as is the case of the real device.

This allows user programs to work with (reading, writing) such a device and initial verification
that the program is writing the correct data to the correct locations, and even correctly
reacting to the read contents. Once this has been verified, the program can be run on the
real hardware with the knowledge that it has already been basically tested for correct
functionality.

www.uTasker.com µTasker – Simple I2C support, demo and simulator V1.3

uTaskerIIC.doc/0.02 4/5 24.12.2007

Screen shot of the EEPROM contents displayed in a VisualStudio watch window. Note that the
contents are as expected after the two writes in the demo program.

Example of controlling an RTC via I2C bus

A well known I2C based RTC (Real Time Clock) is the Dallas DS1307. The demo project has
been extended to support such a device (from 10.9.2007 - check whether your version
includes the define TEST_DS1307 in application.c and check newer service packs if this
is not the case).

By activating the define TEST_DS1307 in application.c (rather than the TEST_IIC) the
DS1307 is initialised to start if not already active and to generate a 1Hz output signal. A read
of the internal time structure is then initiated (see fnGetRTCTime() in application.c). This
reads 7 bytes of data from the RTC and copies the present data and time to a locally
formatted structure (stPresentTime).

The 1Hz signal from the RTC is used as a 1Hz interrupt to increment the local time without
need for new accesses to the RTC, whereby the data and time is requested once every 24
hours to ensure that the data is correctly synchronised – this avoids having to calculate such
things as the number of day in a month and leap years.

www.uTasker.com µTasker – Simple I2C support, demo and simulator V1.3

uTaskerIIC.doc/0.02 5/5 24.12.2007

Normally an application would also support a method of setting a new time and data to the
RTC (eg. by synchronising a local PC time via web server) but such functions can be quite
easily extended by using the I2C driver interface to send the correctly formatted data.

The DS1307 is also included in the I2C device simulator so that its operation can be tested
without the need for such a device connected to the real hardware.

Transmitter Buffer Space checking

In some applications where the use of the I2C is intensive it may be important to check that
an application task is not writing faster to an output buffer than the buffer can be emptied by
sending the data to the I2C bus. The driver was therefore extended as from releases dated
later than 1st December 2007 with a check of the output queue space. The following is an
example of it in use:

if (fnWrite(IICPortID, 0, sizeof(iic_Msg)) > 0) {
// check for room in output queue

 fnWrite(IICPortID, iic_testMsg, sizeof(iic_Msg));
}

The first write with a null-pointer instead of data causes the driver to return the amount of
space left in the output buffer (plus 1) after a message with the defined length were to be
inserted. As long as the call doesn’t return 0 it means that there is enough space to accept
the message. It is very important to avoid writing data to the I2C interface if it can not fit into
the output buffer since the buffer contains some formatting (additional information is entered)
which can cause the driver to fail if the formatting gets corrupted due to content loss.

It is also important to remember that when I2C reads are queued they also occupy transmit
queue space. A read requires also transmission of the I2C device address before the data is
returned and the queue stores this address plus the amount of data to be read (from 1..255
bytes) and the owner task name. This means that a read also inserts 3 bytes of data into the
I2C output buffer. A read thus also can justify a check of the buffer space if the I2C interface is
being used intensively. The following is an example of how the same type of check could be
performed before queuing a read sequence.

if (fnWrite(IICPortID, 0, 3) > 0) {
// check for adequate room in output queue

 fnRead(IICPortID, (unsigned char *)&ucReadEEPROM, 0);
// start the read process of 16 bytes

}

Conclusion

This document has illustrated the use of the µTasker I2C driver interface which allow queuing
of I2C write and read sequences. The µTasker demo project contains code to show two
common I2C devices in use: an I2C EEPROM and an I2C RTC. Both of these devices are
simulated in the µTasker simulator to allow users to comfortably verify their own code before
moving on to final tests with the real devices and hardware.

Document state:

- 14.1.2007 Initial draft version for the V1.3 project
- 24.12.2007 Addition of Real Time Clock example and transmission buffer space checking

