
Embedding it better...

µTasker Document

µTasker – UART User’s Guide

uTaskerUART.doc/0.08 Copyright © 2017 M.J.Butcher Consulting

www.uTasker.com µTasker – UART User’s Guide

Table of Contents
1. Introduction...3
2. UART Characteristics...3

2.1.Additional Control Lines..5
3. Initialisation..6

3.1. Notes about UART use in the µTasker demo project ...8
4. Reception...8
5. Transmission...9
6. Transmitter Blocking..10
7. Flow Control...11
8. RS485 Operation...14
9. UART as Debug Output..18
10. DMA Operation..19
11. Break Condition..20
12. Message Mode..21
13. Echo Mode..21
14. Inter-Space Timing...21
15. Peek Operation..25
16. Multi-Drop, 9-Bit Mode..26
17. Timed UART Character Transmission...28
18. Changing Operation Modes and Flushing Queues..30
19. UARTs in the µTasker Simulator...30
20. External UARTs..30
21. Conclusion..31
 Appendix A – Hardware Dependencies...32

a)UART Peripheral Pins...32
b)RS485 mode...33
c)UART DMA..34

uTaskerUART.doc/0.08 2/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

1. Introduction

Most processors include one or more UARTs (Universal Asynchronous
Receiver/Transmitter) as standard internal peripherals. The interfaces are extremely popular
for various communication protocols for inter-chip or inter-board communication and also for
interaction with users via a terminal emulator program.

The UART interface, also known as serial interface, in the µTasker project allows all UARTs
that a processor owns to be simply configured and utilised via a standardised but versatile
programming interface. This interface, along with various operating modes such as DMA,
RS485 and flow control, is described in this document together with practical code examples.

2. UART Characteristics

UARTs are asynchronous, which means that the data is not synchronised by using a clock
signal. This requires that the receiver and transmitter in a point-to-point connection, or on a
bus, are configured with the correct speed and other parameters match. The speed should
be accurate enough to ensure that the receiver, when synchronised to an individual
character, doesn’t drift so much that it can result in errors recognising the final bits in the
character.

Exactly what speed (Baud Rate) tolerance can be accepted depends on the absolute
accuracy of transmitter and receiver; for example it both are inaccurate by +x% the
connection will still operate correctly since the relative accuracy is still high. Generally a good
rule for the required accuracy of transmitters and receivers that are not related in any way is
maximum 1% tolerance for the transmitter and a receiver than can accept up to a maximum
of 2% tolerance.

When measured at the processor output pin, an idle line is represented by a logic ‘1’ level.
Often an RS232 driver is used to drive the external line, which converts a logic ‘1’ to a
negative signal (-3V..-15V, but typically around -9V as delivered by common driver chips
supplied by logic voltage power supplies of 3V3 or 5V). The following discussion will always
reference the signals at the processor pins, which is thus inverted to the signal polarity when
measured on the RS232 line.

A UART character starts always with a single start bit. The transmitter sends a low level
signal for a single bit period. This period depends on the speed of the UART (the Baud Rate)
and the bit period is given by (1/Baud Rate)s. For example, if the Baud Rate is set to 19’200
a single bit period (and thus the start bit timing) will be 5120.8333us +/- 1%.

The data follows the start bit and is sent always LSB (Least Significant Bit) first. For example,
the data value 0x01 will be sent as ‘1’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, ‘0’, assuming that the data is 8
bits in length. Each data bit is one bit period in length.

Following the data content there is an optional parity bit. If present, this can be even parity,
odd parity, ‘1’ parity or ‘0’ parity and is also present for one bit period.

Each character is completed by a number of stop bits. Stops bits have the level ‘1’ and are
typically, 1, 1.5 or 2 bit period in length.

In the case of a setting with 8 bit characters, one parity bit and 2 stop bits the maximum data
bit throughput is the (Baud Rate *8)/12; 19’200Baud has this a maximum data bit rate of
12’800 bits or 1’600 bytes per second.

uTaskerUART.doc/0.08 3/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

A following character is recognised by the next start bit detected on the line. The spacing
from the end of the last stop bit to the start of the next start bit is not defined at the physical
layer and is also not important for the operation of the receiver since, being an
asynchronous, it resynchronises to the following character without any relationship to what
was previously received one the line.

The receiver typically operates by sampling the state of the Rx signal on the line at a faster
rate than the Baud Rate clock. It is usual to use a 16x oversampling clock so that the falling
edge of start bit can be identified with an accuracy of 1/16 the bit period. Once the start bit
has been detected the clock is synchronised to the new character and each bit of the
character can be sampled 8 oversampling clock periods later. As long as the sampling clock
(the receive Baud Rate setting) is adequately accurate compared to the absolute Baud Rate
of the received signal it will remain accurate doe the duration of a single character. On
detection of the start bit of the following character the process can begin again ensuring that
there is no relationship to the previous received character (which could arrive for a different
source on a bus system) and no inaccuracies will accumulate. Many chips also perform
multiple sampling of each bit and in order to improve performance in noisy environments;
typically this is achieved by sampling not just once at the 8th oversampling clock point but
three times – at 7, 8 and 9 clock points. The logic level detected will be the one that is
sampled at least twice by the three sample points and a single incorrect state due to impulse
noise during the sample phase will be ignored.

Figure 2-1 illustrates a typical character as discussed in this section, where 1.5 stops bits
and even parity are show as reference. The data being transmitted is the 8 bit value 0xa1
and the Baud Rate is 19’200.

8 data bitsStart-bit Parity-bit

Bit period
52.08us

Character period
598.96us

1.5 Stop-bits

Next character
can start from here

Receiver oversampling and sample points

b
it0

b
it1

b
it2

b
it3

b
it4

b
it5

b
it6

b
it7

Figure 2-1 – Example of an asynchronous character

uTaskerUART.doc/0.08 4/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

2.1.Additional Control Lines

The simplest bi-directional UART connection consists of three signals.

 TXD – the transmitted data

 RXD – the received data

 Ground – the reference ground

The TXD at one end of the connection is connected to the RXD at the other end.

In some applications additional control lines are required, which are also specified in the EIA
RS-232-C standard. Furthermore additional protective grounds may be found in connection
cables too. When discussing these it is often useful to reference the two ends of the
connection as the Date Terminal Equipment (DTE) and the Data Circuit-terminating
Equipment (DCE). The easiest method of imaging this is to image a PC connected to an
analogue modem; the PC is the DTE and the modem is the DCE where data transmission
originates from the PC (it drives the TXD line) and reception data arrives at the PC (it
receives via RXD). The commonly used control signals and their directions are thus as
follows, whereby often not all are used and their pin position on a connector varies between
connector types!

 RTS – Request To Send (DTE → DCE)

 CTS – Clear To Send (DTE ← DCE)

 DTR – Data Terminal ready (DTE → DCE)

 DSR – Data Set Ready (DTE ← DCE)

 DCD – Carrier Detect (DTE ← DCE)

 RI – Ring Indicator (DTE ← DCE)

The most commonly used line are RTS and CTS in conjunction with hardware based flow
control, where two devices are connected via RXD ↔ TXD and RTS ↔ CTS. The receiver
uses its CTS line to signal that its receiver can accept data and can stop the flow of data by
negating this signal. The other transmitter immediately stops sending further data until the
CTS is asserted again.

This method of flow control and also a character bases one called XON/XOFF are described
later in this document.

uTaskerUART.doc/0.08 5/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

3. Initialisation

To activate support for the serial interface in the µTasker project ensure that the define
SERIAL_INTERFACE is enabled in config.h.

Before a UART can be used for transmission and/or reception in the µTasker project it needs
to be initialised. This initialisation, or configuration, takes place when the serial interface is
opened. Each UART which the processor supports can be opened individually so that each
UART interface can be used independently.

Code 3-11 show UART1 being opened, which assumes that the processor has at least 2
UARTS (the UARTs are always counted 0, 1, 2 etc.).

QUEUE_HANDLE fnOpenUART(void)
{
 TTYTABLE tInterfaceParameters; // table for passing information to driver
 QUEUE_HANDLE SerialPortID; // UART handle to be obtained during open
 tInterfaceParameters.Channel = 1; // set UART channel for serial use
 tInterfaceParameters.ucSpeed = SERIAL_BAUD_19200; // baud rate 19’200
 tInterfaceParameters.Rx_tx_sizes.RxQueueSize = 256; // input buffer size
 tInterfaceParameters.Rx_tx_sizes.TxQueueSize = 512; // output buffer size
 tInterfaceParameters.Task_to_wake = TASK_APPLICATION; // wake task on rx

#ifdef SUPPORT_FLOW_HIGH_LOW
 tInterfaceParameters.ucFlowHighWater = 80; // set the flow control high in %
 tInterfaceParameters.ucFlowLowWater = 20; // set the flow control low in %
#endif

 tInterfaceParameters.usConfig =
 (CHAR_8 + NO_PARITY + ONE_STOP + USE_XON_OFF + CHAR_MODE);

#ifdef SERIAL_SUPPORT_DMA
 tInterfaceParameters.ucDMAConfig = UART_TX_DMA; // activate DMA on transmission
#endif
 if ((SerialPortID = fnOpen(TYPE_TTY, FOR_I_O, &tInterfaceParameters)) != 0) {
 // open the channel with defined configurations (initially inactive)
 fnDriver(SerialPortID, (TX_ON | RX_ON), 0); // enable rx and tx
 }
 return SerialPortID; // return the serial port handle for this UART
}

Code 3-1 – example of UART initialization

The UART characteristics, such as Baud Rate, Stop bits, Parity, etc. are passed to the open
routine as a TTYTABLE structure. The UART as specified by the Channel parameter will be
initialised with the defined configuration.

The UART interface is buffered and the size of the transmitter and receiver buffers can be
defined individually as show in the example. In this case the receiver will have a buffer size
of 256 bytes and the transmitter a buffer size of 512 bytes. This buffer space is created on
heap memory during the open sequence. The receive buffer can hold received data until
read by application software and application software can pass data to be transmitted up to
the transmit buffer size, after which the UART driver will ensure that it is completely
transmitted over the UART interface.

The optional settings for flow control and DMA are discussed later in the document; they are
shown here only for completeness. If options are enabled but the capabilities not used their

uTaskerUART.doc/0.08 6/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

values should be set to 0 and not left as undefined values otherwise they could lead to
unpredictable behaviour.

The generic call to fnOpen() initialises the UART and a serial port handle is returned. This
reference of type QUEUE_HANDLE is used later for all further interaction with this UART.

The open call is show again below with more details concerning its parameters:

 SerialPortID = fnOpen(
 TYPE_TTY, // serial interface driver type (UART)
 FOR_I_O, // for use as input/output device (Rx/Tx)
 &tInterfaceParameters);// configuration details

Code 3-2 – the fnOpen() function used to open a serial interface

Note that TYPE_TTY must be used for a UART.

The example configures for both reception and transmission (FOR_I_O). If a UART is
required one to operate as a receiver or a transmitter the following parameters can be used
instead, in which case no unnecessary buffer will be defined for the non-used direction.

 FOR_READ
 FOR_WRITE

The receiver and transmitter have been configured by the fnOpen() call, as long as it
doesn’t return a zero handle (this usually means that there is not adequate heap to define the
requested buffer sizes) but they haven’t been activated. To change the state of the receiver
and/or transmitter the fnDriver() function is used. This function uses the serial interface
handle to specify which interface is to be acted on.

 fnDriver(
 SerialPortID, // the serial interface handle
 (TX_ON | RX_ON), // enable rx and tx
 0); // unused parameter in this case

Code 3-3 – the fnDriver() function used to enable receiver and transmitter

After enabling the transmitter and receiver the UART is ready for use. In this example the
UART has been opened in character mode (see parameter CHAR_MODE in
tInterfaceParameters.usConfig). This is the most common mode of operation which
means that each received character is considered to be a complete message. Each time a
character is received at the UART the UART’s owner task, as specified by
tInterfaceParameters.Task_to_wake = OWN_TASK_APPLICATION; is woken. This
task can then read the UART input to treat the received character(s).

The following section shows how the read process operates. It also shows the case when
operating in character mode. Further modes of operation as discussed in later sections of the
document.

It is to be noted that some processors have multiplexing capabilities for the use of pins as
UART functions. The hardware configuration file app_hw_xxxx.h (where xxxx represents
the device used) may thus contain a number of configurations which can be chosen to suit
the hardware in question. If the default pins need to be changed to another set it is
recommended to use these settings to achieve this. See appendix A for a description of
some processor UART multiplexing sets and defines used to control them.

uTaskerUART.doc/0.08 7/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

3.1. Notes about UART use in the µTasker demo project

If the serial interface is enabled in the µTasker demo project the UART, as specified by
DEMO_UART in app_hw_xxxx.h (where xxxx is the target processor for the project), is used
as a command line interface. Its parameters are determined by the default setting in
cParameters[] in application.c.

The UART used as demonstration interface can thus be adapted by changing the UART
number, for example:

 #define DEMO_UART 2 // use UART 2 for demo interface

To disable this UART for use for alternative purposes comment out DEMO_UART. This will
remove all code working with the serial interface but keep general UART driver support
active.

Some processors allow multiplexing UARTs to various processor pins. See Appendix A for
details of processor specific configuration of the UART peripheral pins .

4. Reception

This section shows how received data is read from the UART. It assumes that the UART is
configured to operate in character mode. Further operating modes are discussed in later
sections of this document. See section 3 for an example of initialising the UART interface to
character mode.

extern void fnApplication(TTASKTABLE *ptrTaskTable)
{
 unsigned char ucInputByte;
 while (fnRead(SerialPortID, &ucInputByte, 1) != 0) {
 while (ucInputByte--) {
 toggle_output();
 }
 }
}

Code 4-1 – a task receiving characters from a UART with handle SerialPortID

Code 4-1 shows a simple task which has been configured (using fnOpen()) to be the owner
task for the serial interface with handle SerialPortID. The task is woken on every
character reception from the UART and is shown reading the input queue one byte at a time
until there are no more input characters remaining in the queue. Depending on the value of
each byte received it then toggles and output this number of times (simple example).

All reads are performed using the generic fnRead() function where, following the handle to
the interface, a buffer is specified to read the specified amount of input data to. The function
returns the number of characters copied to the buffer and 0 if there were no more waiting.

uTaskerUART.doc/0.08 8/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

Code 4-2 shows a further variation which first uses fnMsgs() to check how much data is
waiting in the input buffer before reading this exact amount into a buffer.

extern void fnApplication(TTASKTABLE *ptrTaskTable)
{
 QUEUE_TRANSFER length;
 unsigned char ucInputBuffer[100];
 while ((length = fnMsgs(SerialPortID)) != 0) {// get number of waiting bytes
 if (length > sizeof(ucInputBuffer)) { // ensure buffer can’t be overrun
 length = sizeof(ucInputBuffer);
 }
 fnRead(SerialPortID, ucInputBuffer, length); // read to a local buffer
 }
}

Code 4-2 – a task filling a buffer from a UART with handle SerialPortID

fnMsgs() return the amount of waiting messages. In character mode each character is
counted as a single message and so it returns the number of waiting characters.

5. Transmission

This section shows how data is set to the UART interface. See section 3 for an example of
initialising the UART.

Transmission is controlled using the generic fnWrite() function as shown in code 5-1.

 fnWrite(SerialPortID, (unsigned char *)"1234567890", 10);

Code 5-1 – transmission of a string to a UART with handle SerialPortID

A write causes the data to be first copied to the output buffer of the serial interface. The size
of this buffer is defined when the interface is opened. The routine returns the amount of data
copied to the output buffer. If more data is passed than the buffer can accept, the additional
data will be ignored.

The first write will cause buffer transmission to commence and each character will be
transmitted by interrupt or by DMA (if the processor supports DMA and the DMA
transmission mode has been configured).

Further writes during active transmission will be queued in the output buffer for transmission
as soon as previous data bytes have been sent.

In some applications it is critical to be able to ensure that no transmit data is lost due to lack
of output buffer space. The application can check the available buffer space before
attempting a write by calling the fnWrite() function with a zero data pointer. The return
value is the amount of space left in the output buffer if the given amount of data were to be
copied and will only be 0 if there is not adequate space for the complete amount of data to be
accepted (1 will be returned if the available space is the same as the length requested).

If there is not adequate space to perform a write of the complete data the application should
wait until the output buffer is emptied using the TX_FREE event as detailed in the following
section.

uTaskerUART.doc/0.08 9/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

6. Transmitter Blocking

Since the UART’s output buffer may often be filled by software faster than data can be
transmitted the application may need to stop sending additional data when the output buffer
becomes critically full. Rather than polling the remaining space in the output buffer the
TX_FREE event is foreseen as a mechanism to inform the application when the buffer
content has reduced to a low level; the value used is the same as the low-water level of the
UART’s receiver. The event is activated by entering the task to be woken by this transmitter
event, which is a single-shot event, meaning that it needs to be re-activated each time that it
should be reported.

 if (fnWrite(SerialPortID, 0, 10) == 0) {
 fnDriver(SerialPortID, MODIFY_WAKEUP, (MODIFY_TX | OWN_TASK));
 // enable TX_FREE event
 }
 else {
 fnWrite(SerialPortID, (unsigned char *)"1234567890", 10);
 }

Code 6-1 – check of output buffer space before transmission

Code 6-1 shows the remaining output buffer space first being checked before sending data.
If there is adequate space, the data is immediately written. If the output buffer doesn’t have
adequate space to accept the complete data, the transmitter event if enabled by entering the
task name.

When the amount of data in the output buffer reduces to, or below, the low-water value the
TX_FREE event will be sent to wake up the task. In many cases the event doesn’t have to be
handled specifically, although it should be read, since a repeat of the code in example 6-1
will then result in the data being copied. Code 6-2 shows an excerpt from the command line
menu interface in the µTasker demo project (from debug.c) which uses the TX_FREE event
to continue transmission of a menu listing. In this case it reacts specifically to the TX_FREE
event to coordinate the process. Using this method it is possible to transmit a large amount
of menu items using only a small output buffer size since TX_FREE is used as an event to
add further data to the buffer until the transmission has completed.

extern void fnDebug(TTASKTABLE *ptrTaskTable)
{
 QUEUE_HANDLE PortIDInternal = ptrTaskTable->TaskID; // queue ID for task input
 unsigned char ucInputMessage[SMALL_MESSAGE]; // space for receiving messages
 while (fnRead(PortIDInternal, ucInputMessage, HEADER_LENGTH)) { // read input
 switch (ucInputMessage[MSG_SOURCE_TASK]) { // switch on source
 case INTERRUPT_EVENT:
 if (TX_FREE == ucInputMessage[MSG_INTERRUPT_EVENT]) {
 fnDisplayHelp(iMenuLocation);// continue sending further menu items
 }
 break;
 }
}

Code 6-2 – Example of specific handling the TX_FREE event

uTaskerUART.doc/0.08 10/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

7. Flow Control

Flow control is important when a serial receiver cannot always keep up with the data being
sent by a transmitter. This is not necessarily due to the fact that the receiver may be slower
at handling the received data but may also be due to the fact the received data cannot be
processed as fast as it is received. For example, if data is being received at a rate of
19’200Baud on UART 0 and is being sent to UART 1 with a rate of 9’600 Baud it will not be
able to indefinitely receive and store the data arriving at UART0. The point at which the
receiver must request the remote transmitter to pause depends on the size of its input buffer.
Once the input buffer gets critically full then it is time to do this. Once the input buffer has
adequate space again the data transfer can be started again.

Two types of flow control are used:

 In-channel flow control – XON/XOFF is typically used on ASCII encoded
connections. This doesn’t require additional control lines but needs to reserve special
characters for the purpose (XOFF = 0x13 – this can be sent from a terminal with
CTRL + S / XON = 0x11 – this can be sent from a terminal with CTRL + Q).

 Hardware Flow control – this uses typically RTS and CTS control lines.

Figure 7-1 shows a configuration which allows simple testing of flow control operation. It
works with either XON/XOFF or RTS/CTS control as illustrated by the timing diagram in
figure 7-2. Furthermore the complete flow can be paused by sending an XOFF from the
terminal monitoring the third UART’s output (CTRL + S). The operation can then be restarted
by removing the stop condition with XON (CTRL + Q). UARTs 1 and 2 need to be configured
to both use the same serial settings, including the same flow control method.

Practical tests of this configuration are simple on processors with three UARTs. UART2 can
also be on a second board when testing processors with just 2 UARTs.

uTaskerUART.doc/0.08 11/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

UART2
19'200 Baud
no parity
one stop bit

UART1
19'200 Baud
no parity
one stop bit

Task sending
continuous
test data

TXD2

RXD1

RXD2

TXD1

RTS2

CTS2

RTS1

CTS1

UART2 driver
- Interrupt
- DMA
- XON/XOFF
- RTS/CTS

Task relaying
test data to
UART0

UART1 driver
- Interrupt
- DMA
- XON/XOFF
- RTS/CTS

UART0 driver
- Interrupt
- DMA
- XON/XOFF
- RTS/CTS

Terminal
UART0
9'600 Baud
no parity
one stop bit

RXD0

TXD0

XON/XOFF

XON/XOFF or
RTS/CTS

Figure 7-1 – Flow Control test configuration (to test XON/XOFF and RTS/CTS control in interrupt or DMA driven
modes)

Since the speed of UART0 is only half that of UARTs 1 and 2, it represents a bottle-neck in
the system. It is assumed that UART0 transmitter has only a small buffer and so the data
transmitted from UART2 has to be buffered at the receiver of UART1. UART1 input buffer
fills faster than it can be emptied and at some point (depending on the size of the buffer and
the level of its “high-water” mark) it will become critically full. To avoid data being received
that cannot be put into the buffer (overrun), the flow control kicks in; in XON/XOFF mode the
driver of UART1 will send an XOFF; in RTS/CTS mode the driver of UART1 will negate its
RTS line. The flow control action will stop the transmitter from sending any mode data. Note
that it may take a short time for the transmitter to actually stop sending its data and so the
high-water level is set at a level where the receiver can still accepts enough data to avoid an
overrun at its input before the transmitter finally stops. In systems where it is known that the
reaction is fast, the high water mark can be set close to the maximum buffer level (say 95%
and higher).

Flow control has high priority due to its function. When operating in XON/XOFF mode, if the
UART1’s transmitter is busy sending a message from its output buffer when the flow control
needs to be stopped the, the XOFF character will immediately be sent out on to the TXD1
line without first waiting for the transmit buffer to be emptied. The flow control characters can
thus be send in the body of transmitted messages.

When the data flow from TXD2 to RXD1 has been stopped the TXD2 line becomes idle. In
the test configuration this gives the relay task the opportunity to continue sending data to the
UART0 transmitter, this reducing the data content at the UART1 input buffer. Once the buffer
content level reduces to the “low-water” mark the flow will again be enabled; in XON/XOFF
mode the driver of UART1 will send the XON character; in RTS/CTS mode the UART1 driver
will activate its RTS output. UART2 transmitter is thus allowed to send again.

uTaskerUART.doc/0.08 12/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

TXD2

UART1
(Rx buffer content)

RTS1 (CTS2)
(RTS/CTS)

TXD1(RXD2)
(XON/XOFF)

TXD0

Full

Empty

Low water

High water

XOFF XON XOFF

Idle line

Figure 7-2 – Flow control operation in the test configuration, controlled by the high and low water marks in the
receive buffer of UART1

The flow control process repeats, following the pattern illustrated in figure 7-2, resulting in a
continuous and uninterrupted flow of data from the transmitter of UART0. The throughput is
regulated by the input buffer of UART1 in a manner that its input buffer is neither in risk of
overflowing (safety margin defined by the “high-water” mark) nor in risk not having data to
supply the UART0 output (safety margin defined by the “low-water” mark).

If the flow control at the output of UART0 is paused, by the terminal sending an XOFF
character, the transmission from UART0 is stopped immediately and the data flow from
UART2 to UART1 will be stopped as soon as the input of UART1 becomes critically full. In
this case all transmitters will remain in the idle state until the terminal sends an XON
character, after which the transmission to the UART0 output will immediately continue and
the cyclic flow control as depicted in figure 7-2 recommence.

uTaskerUART.doc/0.08 13/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

8. RS485 Operation

The RS485 bus can consist of a semi-duplex two wire electrical connection or a four wire full
duplex connection. There can also be multiple devices sharing the bus.

When a device transmits on the RS485 bus it may need to drive its output transceiver. For
this reason in the RS485 mode the RTS line is activated when transmitting and deactivated
once the transmission of a single message frame has completed.

TXD
Character Character Character Character Character Character

RTS

Message Frame

Figure 8-1 RTS control during a single frame

As illustrated in figure 8-1 the RTS signal is asserted at the start of the first character of a
message frame. The particular frame consists of a number or characters which are each
transmitted asynchronously, meaning that there can theoretically also be a short gap
between each character. The RTS remains active until the end of the final stop bit of the last
character in the frame, after which it is de-asserted as quickly as possible to avoid the bus
being unnecessarily driven after the message transmission has terminated. (A de-assertion
of the RTS during the transmission of the final stop bit is generally acceptable since the idle
state of the bus corresponds to the same state.)

RXD

TXD

RTS

Differential Bus - RS485

UART

Figure 8-2 Standard RS485 half-duplex bus connection (RTS polarity may be configurable)

Figure 8-2 shows a typical circuit for driving a half-duplex RS485 transceiver. This assumes
TX driving when RTS is high.

RS485 mode is not used together with flow control and the RTS signal is thus always
available for transceiver control use.

uTaskerUART.doc/0.08 14/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

Code 8-1 shows a method of controlling the RTS signal together with processors which do
not have a HW setting to automatically control it (see appendix A for details about target
processor capabilities). In order to use this method the following defines must be active, but
the serial interface must not be configured for RTS/CTS flow control operation:

#define SUPPORT_HW_FLOW // support RTS/CTS signals

#define UART_FRAME_COMPLETE // the UART driver informs of frame completion

Furthermore, the mode setting INFORM_ON_FRAME_TRANSMISSION is an extended mode
flag in the µTasker project which requires the configuration variable to be defined as an
unsigned long in type.h:

typedef unsigned long UART_MODE_CONFIG; // UART mode - for extended mode support

// Initialisation code for RS485 mode
//
tInterfaceParameters.usConfig |= INFORM_ON_FRAME_TRANSMISSION;
SerialPortID = fnOpen(TYPE_TTY, FOR_I_O, &tInterfaceParameters):
...
fnDriver(SerialHandle, (MODIFY_CONTROL | CONFIG_RTS_PIN), 0);
 // configure RTS pin for control use
fnDriver(SerialHandle, (MODIFY_CONTROL | SET_RTS), 0); // initially drive '0'

// Message transmission code for RS485 mode
//
fnDriver(SerialHandle, (MODIFY_CONTROL | CLEAR_RTS), 0); // driver RTS ‘1’
fnWrite(SerialHandle, ucMessageData, length); // start message frame transmission

Code 8-1 – Example of configuring for RS485 mode operation and controlling the RTS
line when starting message frame transmission

Before use, the serial interface is configured to control the RTS output. The initial RTS state
is set to ‘1’ in the example but the polarity can be inverted if it were to needed to match the
transceiver hardware.

Before starting the write of a message frame (data contained in a buffer named ucMessage[]
with length in the variable length) the RTS line is activated by using the fnDriver() function as
illustrated. This immediately sets the output to the ‘1’ state to drive the RS485 bus (the
polarity can be inverted if required by using SET_RTS) and the fnWrite() function caused the
data transmission to commence.

When the define UART_FRAME_COMPLETE is enabled the user must deliver a function
conforming to the prototype:

extern void fnUARTFrameTermination(QUEUE_HANDLE Channel);

uTaskerUART.doc/0.08 15/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

This function will be called by the UART driver when the last remaining data byte has been
passed to the UART for transmission and can be used by the application to control the
negation of the RTS line as shown in the example code 8-2.

// The UART is informing that it has just completed transmission of the last
character in a frame.
// This is used to control RTS de-assertion, usually after a delay
//
extern void fnUARTFrameTermination(QUEUE_HANDLE Channel)
{
 if (Channel == 2) {
 //fnDriver(SerialHandle, (MODIFY_CONTROL | SET_RTS), 0);
 can only be used for certain processor types
 fnConfigureInterrupt(&timer_setup_RTS_negate);
 // start delay to RTS negation
 }
}

Code 8-2 – example of controlling negation of the RTS line on message termination

Since the timing of the last transmitted byte depends on specific UART operation in the
processor used, and sometimes also on the mode of operation (interrupt or DMA driven), it is
not possible to specify a generic handling of the RTS negation, which is why the user code
has full control over its operation. The example shows UART channel 2 being the only one
expected to call this function, although handling multiple UARTs is also possible by mapping
the channel to the specific UART interface handle.

In some cases it is possible to simply negate the RTS signal using the fnDriver() function
but it is often necessary to start a timer delay, where the resulting interrupt is used for call
this action. Code 8-2 shows the fnConfigureInterrupt() function being used to
configure the time delay which has been set up in the struct timer_setup_RTS_negate.
This interface can be used with all processors, where there are however some parameters in
the setup struct which may also be hardware or timer type dependent. For completeness one
typical example of the set up of a hardware timer is illustrated in code 8-3 (the exact
configuration may vary slightly depending on the processor used). This set up is for 19’600
Baud timing based on the fact that the specific chip type generates its final interrupt in the
transmission frame (with one parity bit) 11.9 bit periods before the end of the final character.

static TIMER_INTERRUPT_SETUP timer_setup_RTS_negate;

timer_setup_RTS_negate.int_type = TIMER_INTERRUPT
timer_setup_RTS_negate.timer_reference = 2;
timer_setup_RTS_negate.int_priority = 3;
timer_setup_RTS_negate.int_handler = fnTimer_RTS;
timer_setup_RTS_negate.timer_mode = (TIMER_SINGLE_SHOT | TIMER_US_VALUE);
timer_setup_RTS_negate.timer_value = 620; // 620us delay before RTS negation

Code 8-3 – Example of RTS timer configuration

The important points to note are that the routine fnTimer_RTS() has been defined to
handle the timer interrupt, where the RTS negation will actually take place (calling
fnDriver(SerialHandle, (MODIFY_CONTROL | SET_RTS), 0);), and the delay
value of 620us defines the exact time where the RTS line needs to be negated at the end of
the UART transmission referenced to the fnUARTFrameTermination() execution for the

uTaskerUART.doc/0.08 16/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

specific hardware used. This may also require measurements to determine the optimum
setting.

Some chips support a hardware controlled RTS mode which doesn’t need software
intervention. See appendix A for further details concerning the hardware target being used.

In the case of devices with HW control of RS485 mode the configuration is simplified as
shown in code 8-4:

// Initialisation code for RS485 mode
//
fnDriver(SerialHandle, (MODIFY_CONTROL | CONFIG_RTS_PIN | SET_RS485_MODE), 0);
 // configure RTS pin for control use

Code 8-4 – Configuring for HW RS485 mode operation

No SW control of the RTS line is required in this case since the device automatically asserts
(generally sets ‘1’) when a message frame is started and automatically negates (generally
sets ‘0’) when the stop bit of the final character has been sent.

uTaskerUART.doc/0.08 17/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

9. UART as Debug Output

A UART is often used as a debug output and this is very easy to configure in the µTasker
project.

The system debug output is defined by the global variable DebugHandle. This defaults to
the value NETWORK_HANDLE, which means that any writes to the debug output (eg. using
fnDebugMsg(“Hello, World!!”); will be passed to the user defined fnNetworkTx()
function. This function is in debug.c in the µTasker demo project and will pass the output to
a Telnet connection, if established.

To switch the output to an open UART interface the following assign is adequate.

 DebugHandle = SerialPortID; // assign our serial interface as debug port

SerialPortID is the handle of any open serial interface.

If debug output needs to be sent to more than one output, the NETWORK_HANDLE can be
retained and the handling routine modified as required, for example:

extern QUEUE_TRANSFER fnNetworkTx(unsigned char *output_buffer, QUEUE_TRANSFER
nr_of_bytes)
{
 fnWrite(SerialPortID, output_buffer, nr_of_bytes);
 fnWrite(SerialPortID2, output_buffer, nr_of_bytes);
 fnWrite(USB_handle, output_buffer, nr_of_bytes);
 return (fnSendBufTCP(Telnet_socket, output_buffer, nr_of_bytes, (TCP_BUF_SEND |
TCP_BUF_SEND_REPORT_COPY)));
}

Code 9-1 – Example of sending debug output to multiple interfaces

The example Code 9-1 sends debug output to two serial interfaces (with handles
SerialPortID and SerialPortID2, a USB port (assuming available) with handle
USB_handle and also to a Telnet connection (if connected).

The valid debug output can be changed at any time by writing another handle to
DebugHandle, or setting it back to the default NETWORK_HANDLE.

uTaskerUART.doc/0.08 18/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

10. DMA Operation

When the target processor supports DMA operation on its UARTs the driver support can be
activated by setting the define SERIAL_SUPPORT_DMA in app_hw_xxxx.h. This adds the
DMA driver code but doesn’t activate the DMA operation on the UART.

DMA operation is configured on a per UART basis when the interface is configured.

To allow a UART to operate in interrupt driven mode, the DMA operation is disabled with

 tInterfaceParameters.ucDMAConfig = 0; // disable DMA

To enable DMA driven transmission on a particular UART the following is used:

 tInterfaceParameters.ucDMAConfig = UART_TX_DMA; // activate DMA on transmission

DMA UART transmission operation can be used together with both XON/XOFF and
RTS/CTS flow control and thus has no practical restrictions.

DMA reception operation is more limited in use due to the fact that the processor is not
involved with individual characters are they are received. This means that XON/XOFF
operation is generally not possible since the receiver may not recognise the control
characters until a complete block of data has been received. RTS/CTS flow control is
however fully operational.

The DMA reception can to be configured to receive a block of data and the reception is only
complete once the defined amount of reception bytes has been received. Alternatively it can
be configured to recognise a break character to trigger the end of a complete reception
message. In cases where none of these techniques is suitable a free-running DMA reception
is possible whereby the user layer needs to poll the input buffer to see whether it has data to
be extracted form it.

The following DMA reception modes are provided for use in cases where the reception block
size is know (certain protocols with fixed length frames are suitable) or when break control
can be used to signal the completion of a reception block.

 tInterfaceParameters.ucDMAConfig = (UART_RX_DMA | UART_RX_DMA_HALF_BUFFER);

The owner task will be woken when half of the input buffer is full. By setting the input buffer
size to twice the standard reception frame length it allows up to two reception frames to be
saved by DMA reception operation, allowing the owner task to process the first data frame
whilst the second is being received.

uTaskerUART.doc/0.08 19/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

 tInterfaceParameters.ucDMAConfig =
 (UART_RX_DMA | UART_RX_DMA_HALF_BUFFER | UART_RX_DMA_BREAK);

The owner task is woken when the receiver has received a break condition after receiving a
block of data. The half-buffer size should be chosen to be adequate for the largest expected
frame, whereas the task would also be woken if the frame size were to be as large as the
half the available buffer space. See the following section for further details of break mode
support.

 tInterfaceParameters.ucDMAConfig = (UART_RX_DMA | UART_RX_DMA_FULL_BUFFER);

Using UART_RX_DMA together with UART_RX_DMA_FULL_BUFFER alone results in the
receiver being woken exclusively on complete receive buffer full status. Generally the
operation with wake up on half buffer full is preferred since it allows multiple message
reception without critical read timing, to ensure that the buffer is emptied before a following
message can be accepted. However it is important to know the details of the underlying DMA
support in the processor used since not all support native half-buffer lengths and an interrupt
may be used in the driver to emulate the half-buffer method, including a potential critical time
to reconfigure the DMA operation for the following half-buffer operation.

 tInterfaceParameters.ucDMAConfig = (UART_RX_DMA);

Using UART_RX_DMA alone results in free-running reception whereby the user is required to
regularly read the input to ensure that space is available in the input circular buffer. There are
no events generated by the reception driver (a pure HW reception is possible on some
processors with no interrupt overhead whatsoever) and if the user does not read data there
is a potential to overflow the complete buffer whereby its content will be lost. Normally it is
however not a problem since the buffer size can be set adequately large and the user
periodically check at a rate that doesn't allow this to take place.

See appendix A for details of target processors which support DMA operation on their
UARTs.

11. Break Condition

This document is in progress. In the meantime please use the following thread for a
discussion of UART use in the µTasker project:
http://www.utasker.com/forum/index.php?topic=54.0

uTaskerUART.doc/0.08 20/34 02/05/17

http://www.utasker.com/forum/index.php?topic=54.0

www.uTasker.com µTasker – UART User’s Guide

12. Message Mode

This document is in progress. In the meantime please use the following thread for a
discussion of UART use in the µTasker project:
http://www.utasker.com/forum/index.php?topic=54.0

13. Echo Mode

This document is in progress. In the meantime please use the following thread for a
discussion of UART use in the µTasker project:
http://www.utasker.com/forum/index.php?topic=54.0

14. Inter-Space Timing

In some situations the space (time) between individual characters is of importance. Some
protocols use this, for example, to recognise the end of a message. This means that a single
message of an undefined length is expected to consist of a number of individual characters
sent as a single block with no spaces between then (or at least with only small gaps). Once
the message has been transmitted the serial line is left at its idle state for a pre-defined
period (the transmitter is not allowed to send further data until this period has expired). The
receiver identifies the block of data by the fact that it is followed by the pre-defined minimum
idle period and can then handle the data block as a single message without needing to have
length and framing information in the data stream itself. An example of a protocol using this
is the MODBUS serial RTU protocol as described in detail in
http://www.utasker.com/docs/MODBUS/uTasker_MODBUS.PDF

A second example is the identification of an escape sequence in a data stream. This escape
sequence is often used by modems to interrupt data transfer mode and switch back to
command mode and so its implementation is discussed in more detail here:

Typically the escape sequence used by modems consists of the three escape characters “++
+” being received in the data stream with the correct interspace timing, although the exact
characters used is often programmable. Since it is possible for this sequence to exist in data
streams (eg. ‘random’ binary data transfer) it would mean that each time these values were
received it would cause the data connection to be interrupted if there was no extra
information used to validate that it is a real escape sequence; this is where the inter-space
timing again comes into play.

During periods of data transfer there tends to be a lot of data traffic and so periods of idle line
signify that the transfer may have completed and a user may now want to switch from the
data mode to command mode. The idle line thus gives extra information that helps in
identifying a valid escape sequence as opposed to a sequence match during normal data
transfer. Furthermore, if the escape sequence were to be matched at the start of a period of
intensive data transfer there would be no idle line state immediately after the escape

uTaskerUART.doc/0.08 21/34 02/05/17

http://www.utasker.com/docs/MODBUS/uTasker_MODBUS.PDF
http://www.utasker.com/forum/index.php?topic=54.0
http://www.utasker.com/forum/index.php?topic=54.0

www.uTasker.com µTasker – UART User’s Guide

sequence match. This information again gives a further confirmation that the sequence is a
valid escape sequence.

The escape sequence detection algorithm can thus be specified as follows:

- Before the escape sequence is detected there must have been an idle line period of
duration T0

- After the escape sequence detection there must then be an idle line period of
duration T1

- In order for the escape sequence to be detected, there may also not be an inter-
character space of longer than T1 during the escape characters themselves (this
follows from the second requirement)

- Although there could be requirements for a minimum idle period between each of the
escape sequence characters this is not usually a requirement; the individual escape
characters can be received as a block of data.

The following diagram shows two ‘random’ escape sequence pattern received during normal
data transfer followed by a valid escape sequence respecting the idle period requirements
(inter-space timing). After each data bytes has been received a byte receive interrupt is
shown as well as an inter-character space interrupt; these are used by the reference escape
sequence algorithm but it is to be noted that the interrupts may not always be available (eg.
when the receiver is operating in DMA mode) and the exact method may be hardware
dependent (some UARTs support inter-space timing and others require extra HW timers to
be used to support the UART).

RXD
'a' 'b' 'c' 'd' 'e' 'f' 'g' 'h' '+' '+' '+' 'a' 'b' 'c' 'd'

T0

Character interrupts Idle-Line
Interrupt

RXD '+' '+' '+' 'a' 'b' 'c' 'd'

T0

Idle-Line
Interrupt

'+' '+' '+'

T1

Idle-Line
Interrupt

Escape sequence
recognised

Escape sequence
invalid

Escape sequence
invalid

Escape sequence
recognised

Escape sequence
valid

Figure 14-1 Escape Sequence Recognition Timing

The escape sequence software algorithm can be simply described based on the example in
figure 14-1.

- Initially the reception line is considered to be idle.

- When the first reception interrupt is detected the line is no longer idle and, since the
received character does not match the escape sequence character, no escape
sequence matching is required until the line becomes idle again.

- After an idle period of T0 the escape sequence matching is activated again and this
detects the escape sequence (three ‘+’ in this case, as shown at the start of the
second line).

- Although the escape sequence pattern has been detected it is not yet valid since a
period of idle-line is required. The escape sequence is thus invalidated by the

uTaskerUART.doc/0.08 22/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

reception of the character ‘a’ and no further escape sequence matching is required
until the line becomes idle again.

- Once the receiver has detected the idle period and again another occurrence of the
escape sequence has taken place the idle period T1 is also fulfilled. The escape
sequence has finally been validated and the receiver can switch to another mode of
operation.

In order to perform such an operation there are three events that need to be generated:

- An event when a character has been received.

- An event when the inter-character space (either T0 or T1) has been fulfilled.

- An event when the escape sequence has been recognised.

This support can be activated in the µTasker project by enabling #define MODBUS_RTU
and setting the configuration flag RTU_RX_MODE when opening each UART interface which
should use it.

This causes the user call-back function extern void
fnRetrigger_T1_5_monitor(QUEUE_HANDLE Channel) to be called each time that
there is a character reception (only operational in interrupt mode and not DMA mode). This
can be used by the user to retrigger a timer which can be used for monitoring idle line and
generating the idle-line event.

If the processor supports inter-character timing on the defined channel it will automatically
configure the UART to trigger on an idle line of 1.5 character spacing and call the user call-
back function extern int fnSciRxIdle(QUEUE_HANDLE Channel). The call-back
fnRetrigger_T1_5_monitor(QUEUE_HANDLE Channel) is still executed but can be
made dummy by the user if not of interest.

Although these routines are used mainly for MODBUS RTU operation they are suitable for
general purpose use too. After the UART is opened it is configured for a 1.5 character
spacing for use by MODBUS, which can be overwritten to the initial value as required by the
(non-MODBUS) application using the macro _UART_INTERSPACE_RX(usart_channel,
idle_time_in_baud_periods)

eg: _UART_INTERSPACE_RX(0, ((19200 * 50)/1000));which sets the number of bit
periods to result in a timeout after 50ms idle line at 19200 Baud.

The maximum idle period possible depends on the processor used (for example the ATMEL
USARTs can perform the timing up to 65’535 Baud periods (about 568ms at 115’200 Baud).
If longer timeouts are required the user needs to add an additional timer from the end of the
fnSciRxIdle() call-back event, or else by extending the timeout as described below*:

The return value of extern int fnSciRxIdle(QUEUE_HANDLE Channel) is used by
the UART driver to control its further operation:

- If the user returns 0 the next occurrence of the call-back event is after a further
character has been detected and the timeout has taken place again.

- *If the user returns a positive value it is used as an additional timeout value before the
call-back event is executed again. That means, the new value (in Baud periods) is
used as subsequent timeout on a continued idle line.

- If the user returns a negative value it is used as a new (positive) timeout value
(replacing the old one) and will occur once a new character has been received
followed by a new idle period.

uTaskerUART.doc/0.08 23/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

The macro _UART_INTERSPACE_RX(usart_channel,
idle_time_in_baud_periods) can be used outside of the call-backs to set new idle
timeouts as required, in which case the timeout is retriggered by the call and times out after
the period expires with no activity. If reception takes place before this timeout has expired the
new inter-character delay value is retriggered on each received character.

Note that the user must supply the routines fnSciRxIdle() and
fnRetrigger_T1_5_monitor() if their use is enabled in the project.

The recognition of the escape sequence content can take place either in the call-back routine
on each character reception (to enable this, the define
MODBUS_RTU_WITH_RECEPTION_CHARACTER must be enabled so that the corresponding
received byte is passed) or else by the application which reads the input buffer. The following
section discusses peeking at the input buffer in order to recognise escape sequence content
without the need to extract data from the input buffer.

uTaskerUART.doc/0.08 24/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

15. Peek Operation

When the application reads data from a UART using the fnRead() command the content of
the UART reception buffer is moved from the input buffer to the application’s buffer. The data
in the buffer is effectively destroyed and space made available for further reception data.

In some circumstances (see for example the discussion in the previous section about escape
sequences) it is desirable to be able to read data from the input buffer but not clear it from
that location. In such a case the queued input data may be read a multiple amount of times
and is still preserved in the input until a standard read is made.

This type of reading without removal is known as peeking and is supported when the project
define SERIAL_SUPPORT_PEEK is enabled. The following example shows the content of the
input buffer being read but preserved by using the fnPeekInput() function.

 unsigned char ucEscapeCheck[3];
 QUEUE_TRANSFER ScanLength = fnPeekInput(
 SerialPortID, ucEscapeCheck, 3, PEEK_OLDEST_INPUT);

The example shows the input buffer content of the UART input being read into a buffer called
ucEscapeCheck[]. Each time the function is called it returns up to 3 bytes of queued input
data and returns the length that was read; if less data is queued it will return the amount that
could be read.

The advantage of the peek function is that it can be called repeatedly. Imagine that the
escape sequence form the previous section is being searched for and is arriving at the UART
at a rate equivalent to the fnPeekInput() call rate; the first time that the function is called
there is no data in the input buffer and so it returns 0; the second time there is one ‘+’ in the
input queue so it copies this to ucEscapeCheck[]and returns the value 1; the third time
there are two ‘+’ in the input queue so it copies these to the buffer and returns the value 2;
the fourth time there are three ‘+’ in the input queue so it copies these to the buffer and
returns the value 3.

In the case of escape sequence filtering the application can compare the received data with
its escape sequence and leave the input data in the UART reception buffer as long as it
matches. If at any time the sequence is detected as being invalid the application can
immediately use fnRead() to read the data and pass it on to its destination. On a complete
match either a flush of the reception buffer will remove it or else a fnRead() of the
sequence length can be performed to remove it and silently discard it from any data stream.

This technique removes the need to maintain a copy of the read data and thus uses the
UART’s input buffer as a queue. This can result in simpler software to achieve the escape
sequence since data stored in an intermediate buffer at the application level never needs to
be inserted back into a data stream.

Another variation of the user of fnPeekInput() is with the parameter
PEEK_NEWEST_INPUT, which causes the most recent three bytes to be returned from the
buffer rather than the first 3. This allows more data to be queued in the UART buffer and the
newest data to be observed as it becomes available.

uTaskerUART.doc/0.08 25/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

16. Multi-Drop, 9-Bit Mode

9-bit mode simply means that the number of bits in the data are 9 (rather than the more
typical 8 bits). This mode is not usually used to transmit 9 bits of data since this is an unusual
length when the content is to be handled as bytes but rather to transmit the more normal 8 bit
bytes plus a control information; the 9th bit of data is also sometimes referred to as the control
bit.

In some situations the operation in 9-bit mode is also referred to as Multi-Drop mode of
operation since the 9th bit is used to indicate which one of multiple receivers the data is being
sent to – to be more precise, the receiver is first addressed by sending its identification
number (or address) in a 9-bit packet with the control bit indicating that the content is an
address/control and not data.

How the 9th control bit is actually used may change between systems and applications but
the fact is that the UART needs to be able to send and receive 9 bits of data. Some UARTs
have hardware support to do this and others don’t, although they can sometimes (possibly
with restrictions) be used in 8-bit mode and handle the 9th data bit via a (manipulated) parity
bit.

Since the data unit is generically 9-bits the Multi-Drop mode of operation works with 16-bit
units (unsigned short) rather than 8 bit units (unsigned char). This means that the
user can work directly with 9 bits of data by writing the unit with the complete 9 bit content,
whereby the highest 7 bits are not used.

Consider the application code wanting to send two 9 bits transfers the following code can be
used:

unsigned short usData_9_bit[2] = {
 0x0166,
 0x0037
};
fnWrite(serial_9_bit_ID, (unsigned char *)usData_9_bit, sizeof(usData_9_bit));

In this example, the first 9 bit data could be addressing a device with identity 0x66 (the 9th
bit, or control bit, is sent to ‘1’ to indicate that the content is an address). The second byte is
then data (control bit is ‘0’) containing the byte 0x37.

In a similar fashion, a receiver application could read the reception data from its input buffer
using:

unsigned short usData_9_bit[2];
fnRead(serial_9_bit_ID, (unsigned char *)usData_9_bit, sizeof(usData_9_bit));

The data received would be 0x0166, 0x0037 and the application can decide whether it is
being addressed and then use the data if this is the case.

To be able to use the Multi-Drop mode the project define UART_EXTENDED_MODE must be
active (this extends the configuration options to include the following). Transmission and
reception support can be individually enabled by the project defines
SERIAL_MULTIDROP_TX and SERIAL_MULTIDROP_RX respectively.

When the serial interface is configured, the mode is set by the configuration flags as follows:

uTaskerUART.doc/0.08 26/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

tInterfaceParameters.Config |= (MULTIDROP_MODE_RX | MULTIDROP_MODE_TX);
SerialPort_9BIT_ID = fnOpen(TYPE_TTY, ucDriverMode, &tInterfaceParameters);

In this example the UART interface is opened with both receiver and transmitter operating in
9-bit mode. In some cases the UART HW may not only be able to operate in the same mode
in both directions.

To note are the following points:

1) The size of the input and output buffers are in bytes. A 9 bit transmission or reception
unit occupies two byte spaces in the buffer. The buffer size may therefore need to be
dimensioned larger in comparison to 8 bit mode due to this fast.

2) The application can work directly with unsigned short arrays, whereby the 9 bits or
transmitted or received data occupy the 9th least significant bits of each short word.
The control bit is the 9th bit (bit 8) and the 8 bytes of data that it carries are in the least
significant byte (bits 0..7).

3) When sending or receiving 9-bit data each unit occupies 2 bytes in the UART buffer,
therefore the length written or received needs to be the total size (2 for each 9-bit
unit) and not 1 for each unit!

4) The translation between the 16 bit application units and the 8 bit buffer is performed
automatically in the UART driver. The driver may perform some translation to respect
the little-endian or big-endian operation of the processor in order to keep the interface
compatible.

5) Application code will probably work with a control bit defines such as
#define DATA_CONTROL 0x0100
#define DATA_CONTENT 0x0000
When sending the code could thus look like
unsigned short usData_9_bit[2] = {(DATA_CONTROL | 0x66) , 0x37};

6) The location of the 9th data bit in the UART transmission is illustrated in the following
diagram:

9 data bitsStart-bit
Optional
Parity-bit Stop-bit(s)

b
it0

b
it1

b
it2

b
it3

b
it4

b
it5

b
it6

b
it7

b
it8

uTaskerUART.doc/0.08 27/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

17. Timed UART Character Transmission

This section describes a feature that is of interest to some applications where messages are
sent but each character of the message should be delayed with respect to the previous. This
results in an inter-character delay between each transmitted character.

Some processors allow their UART to be configured to automatically insert a number of IDLE
bits between each transmitted character but this may be limited in length and also specific to
only a very few internal UART types.

Rather than the application needing to send each character individually and realise a time
delay to progress with the following, the option UART_TIMED_TRANSMISSION enables
automatic timed operation of transmission as follows:

// UART configuration
//
TTYTABLE tInterfaceParameters; // table for passing information to driver
tInterfaceParameters.Channel = TIMED_UART; // set UART channel for serial use

tInterfaceParameters.ucSpeed = SERIAL_BAUD_19200; // baud rate
tInterfaceParameters.Rx_tx_sizes.RxQueueSize = 0; // input buffer not needed since only tx used
tInterfaceParameters.Rx_tx_sizes.TxQueueSize = 64; // output buffer size
tInterfaceParameters.Task_to_wake = 0; // no task to be woken on receptions
#if defined SUPPORT_FLOW_HIGH_LOW
tInterfaceParameters.ucFlowHighWater = 80; // set the flow control high and low water levels in %
tInterfaceParameters.ucFlowLowWater = 20;
#endif

tInterfaceParameters.Config = (CHAR_MODE | CHAR_8 | NO_PARITY | ONE_STOP | NO_HANDSHAKE |
 UART_TIMED_TRANSMISSION_MODE);
 // the output will be used in timer transmission mode
#if defined SERIAL_SUPPORT_DMA
tInterfaceParameters.ucDMAConfig = (UART_TX_DMA); // dma is used as base of timer transmissions
 #if defined UART_TIMED_TRANSMISSION
tInterfaceParameters.usMicroDelay = 2330; // 2330us time base between each transmitted character
 #endif
#endif
if ((TimedUART_ID = fnOpen(TYPE_TTY, FOR_WRITE, &tInterfaceParameters)) != NO_ID_ALLOCATED) {
 // open for write only
 fnDriver(SerialPortID, (TX_ON), 0); // enable tx
}

Note that the mode is set to UART_TIMED_TRANSMISSION_MODE and that UART TX DMA is
needed as base of the operation. The space between characters is specified in micro-
seconds from the start of one character to the start of the next – if real inter-character bit
delays are required, the time for the transmission of a character (with its start bit, number of
bits, optional parity and stops bits, as well as the baud rate, need to be respected in the
value).

The operation is based on UART DMA transmission but the UART Tx buffer trigger is not
used. Instead the first message byte is immediately passed to the UART for immediate
transmission and a HW timer is configured to run as a periodic timer with the requested
period. Each time the timer fires it triggers a single DMA transfer from the TTY output buffer
to the UART's data register. This continues until all of the characters in the message have
been copied to the UART data register, signalled by the DMA transfer sequence terminating.
The termination event stops the HW timer so that it could be used for other functions (when
transmission is not in progress).

Only processors with UART Tx DMA can thus be used with this technique, which results in
highly efficient message transmission without any user interaction*17-1

uTaskerUART.doc/0.08 28/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

The following shows a typical message transmission:

 fnFlush(TimedUART_ID, FLUSH_TX);
 fnWrite(TimedUART_ID, (unsigned char *)"TIMED UART Transmission\r\n", 25);

Prior to message transmission the TTY output buffer is flushed so that new message content
is set to the start of its circular buffer. This is necessary so that a single DMA buffer transfer
can be used each time.

To be considered are that a second message should not be written until the first has been
transmitted. It is also important that the configured transmission time base is not set lower
than the actual character transmission time otherwise data could be copied too fast to the
UART data buffer, causing transmit overrun and thus loss of data.

This strategy is most suited to systems needing to send regular data for synchronisation
purposes, where the timing relationships are well defined, achieving high accuracy due to the
precision HW timer/DMA operation.

*17-1

It is to be noted that the DMA technique cannot be used by all processors with DMA to
UART transfer capabilities. For example, the Kinetis KL26 will not operate due to the fact
that the it requires its UART status register to be read before writing each data byte when
the write is not performed directly with its own UART empty DMA trigger.
The low power UART in the KL27 however doesn't require this and so the technique is
operational.

uTaskerUART.doc/0.08 29/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

18. Changing Operation Modes and Flushing Queues

This document is in progress. In the meantime please use the following thread for a
discussion of UART use in the µTasker project:
http://www.utasker.com/forum/index.php?topic=54.0

19. UARTs in the µTasker Simulator

This document is in progress. In the meantime please use the following thread for a
discussion of UART use in the µTasker project:
http://www.utasker.com/forum/index.php?topic=54.0

20. External UARTs

Most processors offer at least one UART as standard on-chip peripheral. In fact the number
is more often 2 or 3, and some devices, such as the Kinetis K60 have even 5 on-chip ones.
However, even though the COM port is gradually disappearing on the modern PC this
interface remains so popular in control applications that sometimes even all internal UARTs
don’t suffice for a particular application and this is where external UARTs come to the
rescue.

External UARTs can be memory mapped into the system when the processor has an
external memory bus but often single-chip processors in small packages use SPI or I2C
buses to connect to external UART devices.

The µTasker project supports the NXP SC16IS762/52 via SPI interface as dual external
UART expansion device. A single SC16IS752 (the 62 version can achieve faster
communication speeds) has two UART channels and multiple devices can be connected,
each with its own chip select line, to extend the UART quantity where necessary.

In order to activate external UART channels, the define NUMBER_EXTERNAL_SERIAL (in
app_hw_xxxx.h) needs to be increased from 0 to the number required; 2 for each
SC16IS752 added. In addition, the define EXT_UART_SC16IS7XX should be active so that
the device’s driver is also included.

The numbering of the UART channels starts with the internal ones. If, for example, a
processor has 3 internal UARTs these are numbered 0, 1 and 2. If a higher value is specified
and external UARTs are available the external ones will be used; in the case of 2 external
SC16IS752s these will have the channel numbers 3, 4 (in first chip), 5 and 6 (in the second
chip). The µTasker TTY driver is compatible with all UART types and so the user doesn’t
generally need to know a great deal about their details. The processor’s UART driver will
pass on the handling of all non-internal UARTs to the external device driver. In the case of
the SAM7X, for example, this external driver is contained in the file spi_sc16IS7xx.h,
which is included in SAM7X.c.

uTaskerUART.doc/0.08 30/34 02/05/17

http://www.utasker.com/forum/index.php?topic=54.0
http://www.utasker.com/forum/index.php?topic=54.0

www.uTasker.com µTasker – UART User’s Guide

21. Conclusion

This document has described the underlying asynchronous operation of UARTs, methods of
flow control, RS232/RS485 interfaces and various other specialist UART topics. The
methods for configuration and use of UARTs in the µTasker have been shown in order to
make the integration of UARTs into projects both simple and efficient.

Modifications:

V0.0 5.4.2009:
- Initial draft – work in progress. Not officially released.

V0.01 11.4.2009:
- Work in progress. Reception examples and flow control test configuration added.

V0.02 11.4.2009:
- Work in progress. Transmission, transmitter blocking and RS485 mode added, plus RTS
timings in appendix A

V0.03 19.4.2009:
- Work in progress. UART debug output, DMA modes.

V0.04 11.05.2011:
- Work in progress. External UART section and 9-bit (multi-drop) mode added.

V0.05 06.12.2011:
- Work in progress. Inter-character space section and peek-operation added.

V0.06 17.04.2013:
- Work in progress. Added Kinetis UART pin outs in appendix A and a not in the
initialisation section of setting to remap UART pins on some processors.

V0.07 7.0412017:
- Work in progress. Added timer UART character transmission.

uTaskerUART.doc/0.08 31/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

Appendix A – Hardware Dependencies

a) UART Peripheral Pins

KINETIS

The K60/K70 (reference used here) has 6 UARTs with RXD, TXD, RTS and CTS signals.

The UARTs support infrared and ISO 7816 T0/T1 protocols.

UARTs 0 and 1 are clocked from the core/system clock, which allows highest performance
potential. The other UARTs are clocked from the bus clock.

The UARTs can usually be mapped to various pins on the device. The following table shows
the possibilities, including the defines used to control the pins set used in
app_hw_kinetis.h

UART0 UART0_TXD UART0_RXD UART0_RTS UART0_CTS

UART0_A_LOW Port A2 (Alt 2) Port A1 (Alt 2) Port A3 (Alt 2) Port A0 (Alt 2)

default Port A14 (Alt 3) Port A15 (Alt 3) Port A17 (Alt 3) Port A16 (Alt 3)

UART0_ON_B Port B17 (Alt 3) Port B16 (Alt 3) Port B2 (Alt 3) Port B3 (Alt 3)

UART0_ON_D *Port D7 (Alt 3) Port D6 (Alt 3) Port D4 (Alt 3) Port D5 (Alt 3)

UART1 UART1_TXD UART1_RXD UART1_RTS UART1_CTS

default Port E0 (Alt 3) Port E1 (Alt 3) Port E3 (Alt 3) Port E2 (Alt 3)

UART1_ON_C Port C4 (Alt 3) Port C3 (Alt 3) Port C1 (Alt 3) Port C2 (Alt 3)

UART2 UART2_TXD UART2_RXD UART2_RTS UART2_CTS

Default Port D3 (Alt 3) Port D2 (Alt 3) Port D0 (Alt 3) Port D1 (Alt 3)

K70 –
UART2_ON_E

Port E16 (Alt 3) Port E17 (Alt 3) Port E19 (Alt 3) Port E18 (Alt 3)

K70 –
UART2_ON_F

Port F14 (Alt 4) Port F13 (Alt 4) Port F11 (Alt 4) Port F12 (Alt 4)

UART3 UART3_TXD UART3_RXD UART3_RTS UART3_CTS

default Port E4 (Alt 3) Port E5 (Alt 3) Port E7 (Alt 3) Port E6 (Alt 3)

UART3_ON_B Port B11 (Alt 3) Port B10 (Alt 3) Port B8 (Alt 3) Port B9 (Alt 3)

UART3_ON_C Port C17 (Alt 3) Port C16 (Alt 3) Port C18 (Alt 3) Port C19 (Alt 3)

K70 –
UART3_ON_F

Port F8 (Alt 4) Port F7 (Alt 4) Port F9 (Alt 4) Port F10 (Alt 4)

UART4 UART4_TXD UART4_RXD UART4_RTS UART4_CTS

default Port E24 (Alt 3) Port E25 (Alt 3) Port E27 (Alt 3) Port E26 (Alt 3)

UART4_ON_C Port C15 (Alt 3) Port C14 (Alt 3) Port C12 (Alt 3) Port C13 (Alt 3)

UART5 UART5_TXD UART5_RXD UART5_RTS UART5_CTS

default Port E8 (Alt 3) Port E9 (Alt 3) Port E11 (Alt 3) Port E10 (Alt 3)

uTaskerUART.doc/0.08 32/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

UART5_ON_D Port D9 (Alt 3) Port D8 (Alt 3) Port D10 (Alt 3) Port D11 (Alt 3)

*UART0_TXD on Port D7 is special since its drive strength can be programmed by
CMTUARTPAD in SIM_SOPTS.

The µTasker UART driver supports 6 channels and defaults to the pin-outs as shown in the
“default” rows. By activating the alternative defines, for UARTs with multiple positions, the set
of combinations can be configured accordingly.

b) RS485 mode

The following results were obtained by measuring the final transmission interrupt of the
UART interface, operating at 19200Baud with parity enabled. Devices supporting DMA
operation were also measured in DMA mode, where the final interrupt corresponds to the
DMA completion interrupt.

The values can used to configure a timer (where required) to generate a time delay suitable
for deactivating the RTS signal as the final stop bit is sent in a message frame.

Freescale Coldfire V2 MCU

 M522xx Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 17us before
first bit. Last character interrupt about 10.9 bit times before end (0.57ms).

 M522xx DMA 19’200 Baud (Bit Period 52us). RTS activated about 17us before first
bit. Last character (DMA complete) interrupt about 22 bit times before end (1.144ms).

ATMEL SAM7X

 SAM7X Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 20us..70us
(varies due to synchronisation to the UART clock) (before first bit. Last character
interrupt about 9.8 bit times before end (0.512ms).
Note: UART2 (using ports as RTS) has activation stable at about 37us and identical
off delay.

 SAM7X DMA 19’200 Baud (Bit Period 52us) [UART0 and UART1]. RTS activated
about 20us..70us (varies due to synchronisation to the UART clock) before first bit.
Last character (DMA complete) interrupt about 21 bit times before end (1.08ms).
Note: UART2 (using ports as RTS) has activation stable at about 37us and identical
off delay.

 SAM7X in RS485 mode 19’200 Baud (Bit Period 52us) [UART0 and UART1 only].
RTS activated about 20us..35us (varies due to synchronisation to the UART clock)
before first bit. RTS is active High. RTS automatically negated (low) exactly at the end
of the stop bit. (By setting US_TTGR to 1..255 additional bit period delays can be
added).

uTaskerUART.doc/0.08 33/34 02/05/17

www.uTasker.com µTasker – UART User’s Guide

Luminary Micro

 LM3Sxxxx Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 13us before
first bit. Last character interrupt about 11.9 bit times before end (0.62ms).

 LM3Sxxxx DMA 19’200 Baud (Bit Period 52us). RTS activated about 13us before first
bit. DMA transmission complete interrupt about 11.9 bit times before end (0.62ms).

NXP LPC23XX

 LPC23XX Interrupt 19’200 Baud (Bit Period 52us). RTS activated about 20us..70us
(varies due to synchronisation to the UART clock) before first bit. Last character
interrupt about 1 bit before end (43us).

c) UART DMA

Coldfire V2

Coldfire DMA supports UART transmission and reception on up to 4 DMA channels. The
receiver can use native half-DMA and full DMA buffer options.

KINETIS

Kinetis K DMA supports UART transmission and reception on up to 16 DMA channels.
The receiver can use native half-DMA and full DMA buffer options.

Kinetis KL DMA supports UART transmission and reception on up to 4 DMA channels.
The receiver requires emulated half buffer DMA mode with an interrupt handling the
reconfiguration for the second half (potential critical event). It also so requires a similar
interrupt to handle repetitive full buffer operation.
Free-running DMA without interrupts is possible when the input circular buffer is suitably
aligned and has a modulo length (eg. 512, 1024, 2048 bytes). In free-running DMA
reception mode the user must periodically retrigger the reception length before it
decrements to zero.

uTaskerUART.doc/0.08 34/34 02/05/17

	1. Introduction
	2. UART Characteristics
	2.1. Additional Control Lines

	3. Initialisation
	3.1. Notes about UART use in the µTasker demo project

	4. Reception
	5. Transmission
	6. Transmitter Blocking
	7. Flow Control
	8. RS485 Operation
	9. UART as Debug Output
	10. DMA Operation
	11. Break Condition
	12. Message Mode
	13. Echo Mode
	14. Inter-Space Timing
	15. Peek Operation
	16. Multi-Drop, 9-Bit Mode
	17. Timed UART Character Transmission
	18. Changing Operation Modes and Flushing Queues
	19. UARTs in the µTasker Simulator
	20. External UARTs
	21. Conclusion
	Appendix A – Hardware Dependencies
	a) UART Peripheral Pins
	b) RS485 mode
	c) UART DMA

