

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 1/12 13.11.2008

Introduction

The µTasker web server interface allows the user to control various HTML elements such as
strings to represent values in the system or to display whether an option is set or not. This
makes it simple to use the web server and HTML code to interact with the embedded
software.

In some circumstances it is not the HTML content which defines the operation but rather the
embedded system that should define HTML content itself or allow the HTTP connection to be
used to transfer other data.

This document discusses the Dynamic Content Generation features of the µTasker TCP/IP
stack and gives some examples to show how the user can utilise them in order to produce
powerful effects or efficient advanced controls.

In order to use the dynamic content generation in the µTasker project ensure that the define
HTTP_DYNAMIC_CONTENT is active as well as the basic web server with USE_HTTP and
WEB_PARAMETER_GENERATION.

File content generation

The HTTP interface is not only useful for display and control tasks but is often used to upload
and download data. The data can be file content and this example show how the user can
generate file content, which can either be the contents of internal or external memory (such
as external storage data) or be formatted content which is created on demand.

This example shows how large binary content is “generated” on demand to be sent to the
Browser Client as data file.

Starting with a simple web page a link has been set to another internal file which is displayed
as http://192.168.0.3/4.bin when the user positions the mouse over it (see the status line
display below).

The HTML content to do this is standard - Generate file now

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 2/12 13.11.2008

The file 4.bin doesn’t however actually exist. It is the file which we want to generate when the
user clicks on it which will then be downloaded as a binary file. We have in reality loaded a
file called 4.htm to the file system – this will be opened by the link since the uFileSystem
doesn’t use the ‘bin’ extension directly. That means, it doesn’t try to open the file 4.bin but
instead will finds that ‘4.htm’ exists (assuming really loaded) and this will be served.

This file contains only the following (yes, the file is only 4 bytes in size!!):

£H10

Since the file is however a HTM type it is not server directly but parsed by the HTTP server
and results in the following sequence being interpreted:
#define WEB_PARSER_START '£'
#define WEB_INSERT_DYNAMIC 'H'

static CHAR *fnInsertString(unsigned char *ptrBuffer,
LENGTH_CHUNK_COUNT TxLength, unsigned short *usLengthToSend, HTTP
*http_session) is called with TxLength = 1 and the user’s handler can interpret the
dynamic content type ‘1’ to generate the file as shown below.

if (*ptrBuffer == '1') { // generate large file content
 static unsigned char ucTable[256]; // table to be sent in each chunk
 int x = 0;
 http_session->ucDynamicFlags |= GENERATING_DYNAMIC_BINARY;
 // ensure the HTTP server knows that we are generating binary content
 if (TxLength > ((8*1024*1024)/256)) { // after generating 8 Meg stop
 return 0;
 }
 while (x < sizeof(ucTable)) {
 ucTable[x] = x;
 x++;
 }
 *usLengthToSend = sizeof(ucTable);
 if (TxLength == ((8*1024*1024)/256)) {// signal last chunk to ensure
 that no padding is added
 http_session->ucDynamicFlags |= LAST_DYNAMIC_CONTENT_DATA;
 }
 return (CHAR*)ucTable;
}

The above code results is a binary file being downloaded by the web browser user which is
filled with the binary sequence 0x00, 0x01, 0x02...0xff repeatedly and having a total length of
8 Mega Bytes! By changing the length (8*1024*1024) smaller or even much longer files can
be generated.

A binary file is quite practical because the browser will automatically ask where it should be
saved to. It also doesn’t need any specific formatting. To save other types of file which do
require formatting, the formatting can be added to the routine as discussed later – for
example a WAV file has a simple header containing the coding details and the data length
and this can be added the first time that the routine is called. By linking to a WAV file rather
than a Bin file (Generate file now), the Browser will even
open the file and play it back. Should the embedded project have previously recorded
speech or music data and saved it to memory it can insert the recording rather than the
generated data and it can thus simply be played via a Web browser using this technique.

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 3/12 13.11.2008

Detailed description of the code used to generate binary file content

The user code to define the generation of the file is quite simple. All details about putting it
into the HTTP TCP data stream and handling repetitions in case of lost frames, or limiting
data when the receiver cannot accept the data rate is handled by the µTasker HTTP server.
It doesn’t require a transmit buffer to do this and can achieve fast throughput with minimum
memory requirements.

The user must generate “chunks” of data. These are packets of data of a suitable size – the
smaller the size the more often the routine will have to add them to the outgoing data stream
but smaller sizes may often be more practical to generate. In the example 256 has been
chosen (requiring a small static buffer called ucTable[] to hold the content stable between
frames). Assuming 1400 byte TCP data content per transmitted frame (see the define
HTTP_BUFFER_LENGTH in app_hw_xxxx.h) the user’s routine would be called 5 times to fill
the TCP buffer. In fact the routine will also be called a 6th time but the HTTP server will not be
able to fit the 6th data block into the TCP frame. This means that a better choice for the chunk
size in this case would be 280 bytes for efficiency (also the TCP frames will be filled out with
1400 bytes each and not 1280 bytes) but it would have complicated the task of generating
the binary data pattern.

The user code doesn’t actually know any details about the TCP frame. It just shouldn’t try to
create a single chunk larger that the TCP frame data size (1400 as default) since it would
never fit!

Each time the user’s code is called, the parameter TxLength is incremented. On the very first
call it has the value 1 (never 0) and in this example it is used to know when to stop
generating more data. In other cases it may be used to calculate the offset in memory to get
the next data block, or to define other details about the content; for example when it is 1 it
could add a fixed header to the data and afterwards add the data content. It may also stop
the generation when the end of the memory content that it is collecting is reached rather than
simply transferring a fixed number of chunks.

 http_session->ucDynamicFlags |= GENERATING_DYNAMIC_BINARY;

This is used only in the case of generating binary data content so that the HTTP server
knows that it should not add any HTML content padding, which may otherwise corrupt the
binary content. In this example the flag is set on every call but could also be set just once on
the first call. The flag is always automatically cleared on the next HTTP session.

 if (TxLength > ((8*1024*1024)/256)) { // after generating 8 Meg stop
 return 0;
 }

When the user code returns 0 it signifies that there is no more data to be generated. The
parser will then continue parsing the input file (4.htm in this case) and terminate the HTTP
transfer if there is nothing more to do.

 *usLengthToSend = sizeof(ucTable);

When the user call provides a chunk of data to be added to the stream it must give the length
of the chunk. In this example each chunk is of fixed length but it may vary. When transferring
a file it is often necessary to send a smaller final chunk depending on the real file size.

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 4/12 13.11.2008

 if (TxLength == ((8*1024*1024)/256)) {// signal last chunk to ensure
 that no padding is added
 http_session->ucDynamicFlags |= LAST_DYNAMIC_CONTENT_DATA;
 }

On the very last chunk of binary content it is useful to set the
LAST_DYNAMIC_CONTENT_DATA flag. This informs the HTTP server that it should not pad
the buffer, which it generally does for HTML content. This is not needed when generating
HTML content since padding (some ASCII white spaces) is ignored by a Browser.

 return (CHAR*)ucTable;

The chunk must exist in a stable buffer (static) and the user’s call returns a pointer to this
buffer as return value when there is a chunk to be sent. It is not allowed to return a pointer to
const data since the HTTP server will need to be able to modify the data content!

The user’s function must respect the value of TxLength since it is the only reference to the
part of the complete data that is to be returned as single chunk. It is normal that the HTTP
server can call the routine with the same value of TxLength (for example when the last chunk
couldn’t be put into the last data frame) or with repeats of earlier values (when TCP data has
to be regenerated due to frame loss in the network).

The data type used for TxLength is defined in types.h in th project directory.

typedef unsigned short LENGTH_CHUNK_COUNT; // http string insertion and
 chunk counter for dynamic generation {}

This allows up to 64’000 chunks to be generated. If the amount needs to be even larger the
typedef can be changed to unsigned long.

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 5/12 13.11.2008

HTML content generation

The user call can be used to generate its own HTML code. This is especially useful for
generating things like variable size tables or drop down lists that adapt themselves to suit
parameters and quantities.

The µTasker project contains an example of generating a multiplication table which will be
described here in detail since it shows several features which are of particular interest. For
example it shows how the table supports multiple users who not only request the table to be
displayed but do this at the same time with different parameters! (See later in the section for
views of the actual web page).

The web page for controlling the multiplication table can be found in the web page directory
to the µTasker project. It is either a standard page or an alternative page (eg. In the M5223X
project it is alternative page and replaces another page when it is tested – in
\Applications\uTaskerV1.3\WebPages\WebPagesM5223X\AlternativePages\A
MulTable.htm)

The relevant code in the html file looks like this:

<form action=AMulTable.htm name=r>

Columns (1..12) <input maxLength=2 size=2 name=H1
value="£vH1">

Rows (1..1000) <input maxLength=4 size=4 name=H2
value="£vH2">

<input type=submit value="Generate" name=r></form>

£vH0

<table border="3" style="background-color:silver">£H00</table>

This allows two fields to be modified to set the number of columns and rows and the table to
be generated by pressing the “Generate” button.

Serving this page consists of two steps:

- first the table size parameters are passed by the GET function started when the button is
pressed so that the dimensions are known for the particular session (don’t forget that more
than one person may be doing this at the same time – up to the maximum number of HTTP
sessions supported). The following is a typical GET command visible in the URL when
executed

http://192.168.0.3/AMulTable.htm?H1=10&H2=12&r=Generate

This is requesting a 10 x 12 multiplication table (H1 and H2) and are handled in
fnHandleWeb() in webInterface.c as follows.

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 6/12 13.11.2008

case 'H':
{
 MULTIPLICATION_TABLE *ptrMulTable;
 if (http_session->ptrUserData == 0) {// if no user data space belonging
 to this session create it
 http_session->ptrUserData = uMalloc(sizeof(MULTIPLICATION_TABLE));
 }
 ptrMulTable = (MULTIPLICATION_TABLE *)http_session->ptrUserData;
 if (*ptrData == '1') {
 ptrMulTable->ucColumns = (unsigned char)fnDecStrHex(ptrData + 2);
 if (ptrMulTable->ucColumns < 1) {
 ptrMulTable->ucColumns = 1;
 }
 else if (ptrMulTable->ucColumns > 12) {
 ptrMulTable->ucColumns = 12;
 }
 }
 else if (*ptrData == '2') {
 ptrMulTable->usRows = (unsigned short)fnDecStrHex(ptrData + 2);
 if (ptrMulTable->usRows < 1) {
 ptrMulTable->usRows = 1;
 }
 else if (ptrMulTable->usRows > 1000) {
 ptrMulTable->usRows = 1000;
 }
 }
}
break;

The first thing to note is that each session uses an application specific pointer pointing to a
struct which contains its table parameters. If the pointer is zero (which will be the case the
first time that the session is used) it will obtain memory using uMalloc().
typedef struct stMULTIPLICATION_TABLE // structure used by demo
{
 unsigned short usRows;
 unsigned char ucColumns;
} MULTIPLICATION_TABLE;

Then the parameters are checked for validity (too large values are restricted) and copied to
the struct for use later on with this session. The session is a single HTTP TCP connection
which exists only until the web page has been completely served. If two users were to
perform the action at the same time, each user session would have its individual table
parameters stored individually.

- The second step is the serving the web page’s contents, which then parses the html
content where it finds 4 tags:

£vH1 handled by fnInsertString() to add the columns string value

£vH2 handled by fnInsertString() to add the rows string value

£vH0 handled by fnInsertString() to add instructions

£H00 dynamic content generation command (discussed later)

The string insertion is pretty much standard stuff. The only interesting thing is the way that
the instruction text is chosen since this depends on whether the user has just established
contact with the web page or has just pressed the generate button. We can easily distinguish
between the two cases based on whether the session struct has values (rather than no

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 7/12 13.11.2008

pointer or zero values), so we either instruct with “Change values and click generate!!” and
enter default table dimensions of 10 x 10 or else we write “Here is the requested
multiplication table:”
case 'H':
{
 MULTIPLICATION_TABLE *ptrMulTable;
 unsigned short usRows = 10;
 unsigned char ucCols = 10; // default start values
 int iSessionValid = 0;

 if (http_session->ptrUserData != 0) {
 ptrMulTable = (MULTIPLICATION_TABLE *)http_session->ptrUserData;
 if (ptrMulTable->ucColumns != 0) { // if values have just been set
valid
 ucCols = ptrMulTable->ucColumns;
 usRows = ptrMulTable->usRows;
 iSessionValid = 1;
 }
 }
 switch (*ptrBuffer) {
 case '0':
 if (iSessionValid != 0) {
 cPtr = (uStrcpy(cValue, "

Here is the requested
multiplication table:

") - 1);
 }
 else {
 cPtr = (uStrcpy(cValue, "

Change values and click
generate!!

") - 1);
 }
 break;

 case '1': // columns
 cPtr = fnDebugDec(ucCols, 0, cValue);
 break;

 case '2': // rows
 cPtr = fnDebugDec(usRows, 0, cValue);
 break;

 default:
 return 0;
 }
 *usLengthToSend = (cPtr - cValue);
}
break;

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 8/12 13.11.2008

The more interesting part is how the dynamic content generation support is used to generate
a table and values, so here it is:

if (ptrBuffer == 0) { // special case when session is terminating. This is
used to clear any session specific data and only occurs when there is a
valid user data pointer
 uMemset(http_session->ptrUserData, 0, sizeof(MULTIPLICATION_TABLE));
 // clear content
 return 0;
}

Comment: When the TCP connection is closed, which happens after the complete page
has been served, the session data has to be deleted otherwise it would not be possible
to distinguish whether the next session on a particular TCP socket is a new connection
or not. By deleting the session’s struct this ensures that this is possible. This call with
zero pointer from the HTTP server only takes place when the session uses the
http_session->ptrUserData pointer.

if (*ptrBuffer == '0') { // The multiplication function
 MULTIPLICATION_TABLE *ptrMulTable;
 LENGTH_CHUNK_COUNT Chunk = (TxLength - 1);
 LENGTH_CHUNK_COUNT X, Y;

 if (http_session->ptrUserData == 0) {
 http_session->ucDynamicFlags = NO_DYNAMIC_CONTENT_TO_ADD; // inform
 that we don't want to generate anything this time
 *usLengthToSend = 0;
 return cValue; // user session unknown so don't generate
 anything. This occurs when the window is first opened
 }

Comment: This catches the first contact with a new session and stops the table being
generated until the user has actually pressed the generation button.

ptrMulTable = (MULTIPLICATION_TABLE *)http_session->ptrUserData;

if (TxLength > (LENGTH_CHUNK_COUNT)(ptrMulTable->ucColumns * ptrMulTable-
>usRows)) {
 if (ptrMulTable->ucColumns == 0) { // no valid input data
 http_session->ucDynamicFlags = NO_DYNAMIC_CONTENT_TO_ADD; // inform
 that we don't want to generate anything this time
 *usLengthToSend = 0;
 return cValue;
 }
 return 0; // complete table content generated
}

Comment: The complete table has been generated so this terminates the present
section. The web server will then continue and add the remains of the HTML file which
caused the generation to start.

X = (Chunk%ptrMulTable->ucColumns);
Y = ((Chunk/ptrMulTable->ucColumns) + 1);
if (X == 0) {
 if (Y == 1) {
 cPtr = (uStrcpy(cValue, "<tr style=""background-color:white""><th
width=""60"">") - 1); // start a new table row

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 9/12 13.11.2008

 }
 else {
 cPtr = (uStrcpy(cValue, "<tr><th style=""background-color:white""
width=""60"">") - 1); // start a new table row
 }
}
else {
 cPtr = (uStrcpy(cValue, "<th width=""60"">") - 1); // start a new
 column
 Y *= (X + 1); // the multiplication result
}
cPtr = fnDebugDec(Y, (WITH_TERMINATOR), cPtr); // insert the result
if (X == ptrMulTable->ucColumns) { // end of this row
 cPtr = uStrcpy(cPtr, "</tr></th>"); // close table row
}
else {
 cPtr = uStrcpy(cPtr, "</th>"); // close a single column
}
*usLengthToSend = (cPtr - cValue - 1); // length of code to insert
}

The further routine content is adding HTML code as strings to build up a HTML table of the
defined number of rows and columns. It is colouring some of the table elements using a
background colour to make it look nicer and adding the row and column multiplication results.
This is quite standard software which may need a bit of debugging to get absolutely right but
the result is simply chunks of a HTML table – strings in fact – which are simply generated
one after another when the routine is called with incrementing TxLength value. In this case a
chunk was chosen to be a single row since this is easy to manage. Again it is to be noted
that the value of TxLength may be repeated or it may also go back to a lower value during
the process (due to chunks that don’t fit into the present TCP frame or repeats due to lost
transmissions). The user code doesn’t need to know no such details but is just required to
generate each chunk that is demanded.

It should be clear that the user code is generally small and easy to write because the only
goal is to generate the correct chunk corresponding to the Txlength value, which starts at 1
and increments to whatever limit the code sets. The result is however very powerful – not
only can interesting and useful effects be generated but such functions are quite easily
possible supporting multiple users with different parameters are the same time!!

So what does the result look like when the code runs?

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 10/12 13.11.2008

Initial contact with the web page, displaying default values and instructions as to what to do

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 11/12 13.11.2008

After changing the Rows value and clicking on the Generate button.

www.uTasker.com µTasker – Dynamic Content Generation V1.3

uTaskerV1.3_Content_Generation/0.0 12/12 13.11.2008

Conclusion

This document has introduced the Dynamic Content Generation support in the µTasker web
server. It has shown two typical examples of its use to generate a data file for downloading
via Web Browser and for generating program controlled HTML content. Both examples show
how the user code can concentrate on its task of generating data ‘chunks’ and leaving the
web server to perform the tasks of ensuring correct delivery of the resulting HTTP data
session.

User code is generally small and easy to maintain but benefits from inbuilt features allowing
multiple users to generate individual web pages with different parameters even at the same
time.

Modifications:
- V0.0 13.11.2008 First draft.

