
Embedding it better...

µTasker Document

µTasker – DMX512 and RDM

uTasker_DMX512.doc/V1.01 Copyright © 2018 M.J.Butcher Consulting

www.uTasker.com µTasker – DMX512

Table of Contents
1. Introduction...3
2. DMX512 Frame..4
3. DMX512 Transmission...5

3.1 UART initialisation...6
3.2 Preparing and queueing a DMX512 frame...7
3.3 Configuring and starting timer control..7
3.4 Interrupt call-backs...8
3.5 Application event handling...8
3.6 Notes about DMA events..9
3.7 Multiple DMA512 Outputs...9

4. DMX512 Reception..10
5. RDM (Remote Device Management)...13
6. RDM Discovery..15
7. RDM Reception..16
8. Conclusion..17

uTasker_DMX512.doc/1.01 2/19 15/08/18

www.uTasker.com µTasker – DMX512

1. Introduction

This document discusses the DMX512 (Digital Multiplex) implementation in the µTasker
project.

DMX512 is used typically for controlling stage lighting and effects but also finds use in
various non-theatrical/lighting environments. It usually makes use of RS485 electrical
signalling at the electrical level together with asynchronous UART bit level protocol at
250kBaud, one start bit, 8 bits, no parity and 2 stop bits (11 bits per character).

DMX512 is unidirectional from a master to a slave but can have a feedback path if its RDM
(Remote Device Management) option is used.

A DMX512 frame consists of a break condition signifying its start, a MAB (Mark-After-Break)
and a slot 0 data byte followed by 512 channel data bytes. However, shorter frames than 512
are allowed (as long as not shorter than 1.204ms in duration) and the frame rate can be as
low as once every 1s. Timing is fairly flexible as long as the minimum break times of 92us
and minimum MAB of 12us are respected, which give a maximum refresh rate of about 44Hz
(22.676ms frame time).

The µTasker DMX512 transmitter allows configurable lengths with accurate frame timing,
together with low overhead; DMA is used where possible so that the application only needs
to supply the next transmit frame's content on time.

The µTasker DMX512 receiver is designed to be tolerant to frame timing deviations and also
has low overhead with DMA being used wherever possible. The application is informed of
new reception frame availability in its input buffer so that the content can be handled without
needing high priority operations to be in place.

Optional RDM transmission and reception is supported, which takes over as much work from
the application as possible.

uTasker_DMX512.doc/1.01 3/19 15/08/18

www.uTasker.com µTasker – DMX512

2. DMX512 Frame

The following figure shows the basic DMX512 frame and its timing values and ranges where
Slot N is max. Slot 512:

From this general frame the configuration settings for the transmitted frame in the µTasker
project configuration can be matched to:

uTasker_DMX512.doc/1.01 4/19 15/08/18

Break
>= 92us

1.204ms (min.) .. 22.668ms (max.)

M
A

B
S

lo
t

0
S

lo
t 1

S
lo

t 2
S

lo
t

3
S

lo
t

4
S

lo
t 5

..
.

S
lo

t
N

-1

S
lo

t N

Receiver should recognise
a break of at least 88us

MAB >= 12us and receiver
a MAB of at least 8us

Start

b
0

b
1

b
2

b
3

b
4

b
5

b
6

b
7

2 x Stop

4.0us

DMX512_Break

DMX512_MAB

S
lo

t 0
S

lo
t

1
S

lo
t

2
S

lo
t 3

S
lo

t 4
S

lo
t

5
...

S
lo

t N
-1

S
lo

t
N

Next
Frame's
Break

DMX512_PERIOD

DMX_SLOT_COUNT
(0..512)

www.uTasker.com µTasker – DMX512

3. DMX512 Transmission

The FlexTimer (or Timer PWM Module [TPM] in some Kinetis parts) is an excellent time base
for DMX512 frame timing and so is used as generic method on all Kinetis parts. As the
following figure shows, two channels of a timer (which share the same time base and are
synchronised) can be used to derive the MAB start and MAB stop points in time. Their cycle
time (frequency) defines the DMX512 frame period.

The channel 0 and channel 1 signals are generated by setting them up to generate PWM
outputs starting with a space and changing to a mark at the appropriate times. Channel 0
thus represents the break condition that needs to be generated on the transmitter output and
channel 1 output going high represents the point in time when the DMX512 data
transmission starts. These outputs are useful for checking the timing involved but don't
actually need to be used due to the fact that their interrupts (or DMA triggers) are used to
control the process – the related timer and channel events are shown in the following image:

It is clear to see from these events (interrupt or DMA triggers) that the control of the frame
output is very straight forward indeed:
1. On each timer overflow event a break condition ('0' on transmitter output) is started at the
transmitter
2. On each channel 0 match event the break condition is terminated so that the transmitter
output becomes '1' again
3. On each channel 1 match event frame data transmission is started (after the MAB that
results)

uTasker_DMX512.doc/1.01 5/19 15/08/18

Timer PERIOD

PWM
space

PWM
space

PWM
mark

PWM
mark

Ch 0

Ch 1

Timer PERIOD

Ch 0

Ch 1

Timer
overflow
event

Ch 0
match
event

Ch 1
match
event

www.uTasker.com µTasker – DMX512

Further to this, each timer overflow event (1) can also be used to inform the application layer
that the frame will start. In the µTasker implementation one or more frame buffers can be
prepared for transmission before the frame begins and so the application can use this to
prepare the subsequent frame data so that it is ready when its transmit time slot arrives (2 in
a following frame transmission).

It is worth pointing out that some of the Kinetis devices (such as KL27 or K66) allow outputs
from certain flex timer (or TPM) channels to modulate certain UART transmit outputs. This is
intended for infra-red transmission, for example, but can also be used to directly modulate
the break condition (see channel 0 output) on to the transmitter. This is however not used as
“generic” method since it is restricted to certain parts with this capability and is only available
on certain UART/timer combinations.

The following extracts from the DMX512 code explain important details of the
implementation.

3.1 UART initialisation

unsigned char ucDMX512_tx_buffer[DMX_SLOT_COUNT + 1 + 2];
tInterfaceParameters.ucSpeed = SERIAL_BAUD_250K; // fixed DMX512 baud rate
tInterfaceParameters.Config = (CHAR_8 | NO_PARITY | TWO_STOPS | CHAR_MODE |
UART_HW_TRIGGERED_TX_MODE); // fixed DMX512 settings
tInterfaceParameters.Rx_tx_sizes.TxQueueSize = (sizeof(ucDMX512_tx_buffer) * DMX512_TX_BUFFER_COUNT);
 // output buffer size
tInterfaceParameters.ucDMAConfig = (UART_TX_DMA); // transmit using DMA

In the UART configuration these parameters set the DMX512 mode of operation (8 bits, two
stop bits and no parity at 250kBaud) whereby the transmitter is operated in DMA mode
whenever possible.

The UART driver mode UART_HW_TRIGGERED_TX_MODE is specified which allows queuing
frames in the output buffer for later release under hardware control.

The output buffer size is a multiple of the frame data length so that up to
DMX512_TX_BUFFER_COUNT frames can be queued.

Note that when DMX_SLOT_COUNT is 512 the buffer size is a multiple of 515 bytes. This is due
to slot 0 in addition to the 512 data bytes and also two bytes in the queue in this mode that
specify each queued frame's individual length.

See the UART user's guide for full details of using the driver:
http://www.utasker.com/docs/uTasker/uTaskerUART.PDF

uTasker_DMX512.doc/1.01 6/19 15/08/18

www.uTasker.com µTasker – DMX512

3.2 Preparing and queueing a DMX512 frame

int I = 3;
fnDriver(DMX512_PortID[0], (TX_OFF), MODIFY_TX);
 // disable the transmitter since we will be preparing output and then starting by hardware trigger
ucDMX512_tx_buffer[0] = (unsigned char)((DMX_SLOT_COUNT + 1) >> 8);
 // individual message content length
ucDMX512_tx_buffer[1] = (unsigned char)(DMX_SLOT_COUNT + 1);
ucDMX512_tx_buffer[2] = 0; // slot 0 value
while (i < sizeof(ucDMX512_tx_buffer)) {
 ucDMX512_tx_buffer[i] = (unsigned char)(i – 3); // fill frame with data values
 i++;
}
fnWrite(DMX512_PortID[0], ucDMX512_tx_buffer, (DMX_SLOT_COUNT + 1 + 2)); // prepare first DMX512 frame

The transmitter is initially disabled since it will later be enabled to release frames and a frame
is prepared in a temporary buffer. We note that in this mode the first two bytes of the content
represents the length of the individual frame that we will be queuing in the output buffer. The
frame is written to the UART output where it remains pending due to the fact that the
transmitter is not yet active.

3.3 Configuring and starting timer control

PWM_INTERRUPT_SETUP pwm_setup;
pwm_setup.int_type = PWM_INTERRUPT;
pwm_setup.pwm_mode = (PWM_SYS_CLK | PWM_PRESCALER_16 | PWM_EDGE_ALIGNED | PWM_POLARITY |
PWM_NO_OUTPUT); // clock PWM timer from the system clock with /16 pre-scaler
pwm_setup.int_handler = 0;
pwm_setup.pwm_reference = (_TPM_TIMER_1 | 0); // timer module 1, channel 0
pwm_setup.pwm_frequency = (unsigned short)PWM_TPM_CLOCK_US_DELAY(DMX512_PERIOD, 16);
 // generate frame rate frequency on PWM output
pwm_setup.pwm_value = ((pwm_setup.pwm_frequency * DMX512_BREAK)/DMX512_PERIOD);
 // output starts low (inverted polarity) and goes high after the break time
pwm_setup.int_priority = PRIORITY_HW_TIMER; // interrupt priority of cycle interrupt
pwm_setup.pwm_mode |= PWM_CHANNEL_INTERRUPT; // use channel interrupt to stop the break
pwm_setup.channel_int_handler = _mab_start_interrupt; // interrupt call-back on channel match
START_DMX512_BREAK_0(); // generate the first break immediately
fnConfigureInterrupt((void *)&pwm_setup); // configure and start

pwm_setup.pwm_reference = (_TPM_TIMER_1 | 1); // timer module 1, channel 1
pwm_setup.pwm_value = ((pwm_setup.pwm_frequency * (DMX512_BREAK + DMX512_MAB))/DMX512_PERIOD);
 // second channel goes high after the MAB period to control the timing for the start of the
 frame transmission
pwm_setup.int_handler = _frame_interrupt_0; // interrupt call-back on PWM cycle
pwm_setup.channel_int_handler = _mab_stop_interrupt; // interrupt call-back on channel match
fnConfigureInterrupt((void *)&pwm_setup); // configure and start

TPM1 channels 0 and 1 are configured (identical setup can be used for flex timers too)
where the frame period and MAB times are expressed in us. Interrupts are entered on the
timer overflow and on each channel match.

If the PWM outs are not required PWM_NO_OUTPUT is used. Without this, the signal appears at
its PWM pin, which can also be useful for monitoring the internal operation for analysis or
debug purposes.

In the case of the Kinetis flex timers PWM_POLARITY is used to control a space followed by a
mark (inverting the normal output polarity). If only interrupt (or DMA) generation is relevant
this setting has no consequence.

See the hardware timer guide for full details of using the driver:
http://www.utasker.com/docs/uTasker/uTaskerHWTimers.PDF
uTasker_DMX512.doc/1.01 7/19 15/08/18

www.uTasker.com µTasker – DMX512

3.4 Interrupt call-backs

// DMX512 transmit frame period interrupt
//
static void _frame_interrupt(void)
{
 START_DMX512_BREAK(); // initiate the break
 fnInterruptMessage(OWN_TASK, (unsigned char)(DMX512_TX_NEXT_TRANSMISSION));
 // inform the application that a DMX512 frame is just starting and it
 should prepare the following frame content
}

static void _mab_start_interrupt(void)
{
 END_DMX512_BREAK(); // remove the break condition (this is the start of the MAB period)
}

static void _mab_stop_interrupt(void)
{
 START_DMX512_TX(); // initiate frame transmission (this is the end of the MAB period)
}

The interrupts are used to control the hardware to generate break/idle signals and to start the
frame transmission. The control is implemented as a macro that matches the hardware used.

In the case of the Kinetis UART the break control is performed by setting the Tx output pin
temporarily to GPIO output function driving a '0' before reprogramming the pin back to its
UART function. The reason for using this method rather than queuing break characters is
that it allows more accuracy and is easier to control; the break character that the Kinetis
UART sends is always 10 (or 11) bits in length (40 or 44us) and it is necessary to add
additional break characters at appropriate times to extend this. Using GPIO the resolution is
not restricted to a multiple of the break character length.

3.5 Application event handling

switch (ucInputMessage[MSG_INTERRUPT_EVENT]) {
case DMX512_TX_NEXT_TRANSMISSION: // DMX512 frame is starting so we should prepare the
 following frame's data content
 if (fnWrite(DMX512_PortID, 0, (DMX_SLOT_COUNT + 1 + 2)) > 0) { // if there is free buffer space
 usTxLength = fnConstructDMX512(ucDMX512_tx_buffer); // prepare the next DMX512 frame to be sent
 fnWrite(DMX512_Master_PortID, ucDMX512_tx_buffer, usTxLength); // prepare next DMX512 frame
 }
break;
}

The application handles the interrupt event that is posted by the frame cycle interrupt
callback. It defines the next frame's content (here a subroutine – fnConstructDMX512() -
is shown that can add the required content) and writes it into the UART output buffer where it
remains until transmission is triggered again.

Note that in the UART_HW_TRIGGERED_TX_MODE the transmitter is automatically disabled after
each frame transmission so that additionally queued frames will remain pending until
released as required. The application can thus queue as many frames as the UART output
buffer can hold. The output buffer size must be an exact multiple of the frame size in this
mode.

The fact that the application can prepare multiple frames in advance makes it very insensitive
to its reaction time and ensure accurate timing in all circumstances.

uTasker_DMX512.doc/1.01 8/19 15/08/18

www.uTasker.com µTasker – DMX512

3.6 Notes about DMA events

Interrupts have been used in the generic DMX512 transmission method since it makes it
usable on all parts, even those without DMA or too limited DMA channels. By using the timer
events to trigger DMA to perform the HW activity instead of the interrupts is otherwise
possible but not shown further here; DMA driven control will remove any interrupt jitter in
systems that require most exact timing. Generally, a frame cycle interrupt is however still
needed in order to generate a suitable periodic event for the application.

3.7 Multiple DMA512 Outputs

The timer events can be used to perform the same actions on multiple UARTs if multiple
DMX512 outputs are used. Each output just requires to open its own UART interface with the
same settings and prepare its own frame content. The single timer can be used to control
multiple synchronised transmitters.

If synchronisation is not desired (eg. a transmitter uses a different frame period and/or
timing) a second timer can be configured in the same way to supply it's event timing.

uTasker_DMX512.doc/1.01 9/19 15/08/18

www.uTasker.com µTasker – DMX512

4. DMX512 Reception

A DMX512 receiver needs to receive the data sent by a DMX512 master and associate it
with a particular frame so that it can recognise slots 0 to slot 512 (for a full length frame). For
lowest overhead, the receiver can operate in DMA mode – otherwise, it operates in interrupt
driven mode.

The DMX512 protocol uses a break to signify the start of a frame. This also signified the end
of the previous frame, if there was one.

The minimum break duration that a receiver must be able to detect is 88us and it must be
capable of receiving a data frame starting after a minimum 8us MAB.

A suitable strategy for reception (also suitable for DMA operation) is thus as follows:

1. Initially the receiver ignores or discards any data if started/connected during a period of
frame data reception
2. A break is waited for and used to enable the subsequent reception
3. The receiver then collects data until a following break is detected. The data length is
reported to the application so that it can read out the frame content. The receiver remains
enabled so that it is ready to receive following data too, even if the application hasn't yet
handled the first buffer content

The application extracts a complete frame (knowing its length) and processes the slot 0
frame type, followed by the data content. As long as the UART reception buffer is adequately
large it allows multiple frames to be received before the application needs to process them,
thus relaxing the application's reception timing requirements.

In a system with know, fixed length DMX512 frames the receiver could report the availability
of the new frame once the approppriate amount fo data had been received. This would mean
that the data could generally be processed earlier in the frame, rather than waiting for a
break to be detected to signify that it has completed. The same strategy could be used to
already close a reception frame after 513 bytes, knowing that this must be a compete frame.
This is however not performed in the generic solution since it complicates DMA reception
and is not always possible in processor DMA modes. The break detection is therefore always
used to terminate a reception frame.

In the case of frame reception that is not terminated by a break after a maximum time of 1s
its content is flushed and the receiver set to its inactive state, waiting for the start of new
activity.

Frames that have more that 513 bytes in them are also flushed because they are longer than
the allowed DMX512 frame length.

The basis for the UART DMA reception is a free-running DMA receiver with adequate buffer
space for at least one DMX512 frame. If no DMA is available, or desired, the UART receiver
can however also be used work in standard interrupt mode.

A break detection interrupt call-back is configured in order to initially enable the UART
reception and handle the end of frame detection. It informs the application of the length of
DMX512 frame data to be read from the UART input buffer.

The application responds to the report of the received frame being ready by reading its length
from the UART's input buffer and processing the content accordingly. As soon as the
application has read the data its space in the UART input buffer is again available for further
reception.

uTasker_DMX512.doc/1.01 10/19 15/08/18

www.uTasker.com µTasker – DMX512

DMX512 Reception in DMA mode

DMA mode is configured with the UART DMA mode:

tInterfaceParameters.ucDMAConfig = (UART_TX_DMA | UART_RX_DMA | UART_RX_DMA_BREAK | UART_RX_MODULO);

whereby UART_RX_MODULO is only required by devices whose DMA controller needs modulo
aligned buffers for continuous operation (most Kinetis KL parts, for example).

DMX512 Reception in interrupt mode

Interrupt driven mode is configured with the UART configuratation

tInterfaceParameters.Config |= (MSG_BREAK_MODE);

which enables interrupt framing mode based on break detection.

The UART driver reports frames identically in both cases, based on a message sent to the
owner task with information about the channel that received a frame, along with its size. The
task's input queue handles the message as follows:

 case TASK_TTY: // message from the UART (pseudo) task
 fnRead(PortIDInternal, ucInputMessage, ucInputMessage[MSG_CONTENT_LENGTH]);
 switch (ucInputMessage[0]) {
 case TTY_BREAK_FRAME_RECEPTION:
 {
 QUEUE_HANDLE Channel;
 unsigned short usFrameLength;
 unsigned char ucRxFrame[DMX_RX_MAX_SLOT_COUNT + 1];
 Channel = ucInputMessage[1]; // uart channel that the frame has been received on
 usFrameLength = ucInputMessage[2];
 usFrameLength <<= 8;
 usFrameLength |= ucInputMessage[3]; // the length of the frame waiting
 in the UART buffer
 fnRead(DMX512_Slave_PortID, ucRxFrame, usFrameLength);
 // extract the complete DMX512 reception frame
 fnHandleDMX512_frame(DMX512_Slave_PortID, ucRxFrame, usFrameLength, 0);
 // handle the received frame
 break;
 }
 }
 break;

The handling routine simply reads the data from the input queue and processes its content.

uTasker_DMX512.doc/1.01 11/19 15/08/18

www.uTasker.com µTasker – DMX512

The following shows it reading a frame (error handling has been removed for clarity) and
deciding whether it is a standard DMA frame (slot 0 is 0x00) or needs special handling:

 unsigned char ucRxFrame[DMX_RX_MAX_SLOT_COUNT + 1];
 fnRead(uart_handle, ucRxFrame, usFrameLength); // extract the DMX512 reception frame
 switch (ucRxFrame[0]) { // decide on what to do with it based on slot 0 value
 case START_CODE_DMX512: // (0x00) DMX512 content
 break;
 case START_CODE_RDM: // (0xcc) RDM content
 break;
 default:
 break;
 }

uTasker_DMX512.doc/1.01 12/19 15/08/18

www.uTasker.com µTasker – DMX512

5. RDM (Remote Device Management)

RDM over DMX512 networks is specified in ANSI E1.20 – 2010.

It permits a master to discover, then configure, monitor and manage slave devices on the
network.

A master can thus communicate with slaves when the network starts and is being configured
and then intermittently during normal DMX512 operation (with some but minimum impact on
the overall operation).

Since a slave often responds to a RDM transmission there is a difference to the basic
DMX512 operation which is represented in the following diagram:

The first thing to notice is that the communication is bi-directional. Since it is semi-duplex on
an RS485 physical layer the master requires an output to control it driving the line during
normal operation and listening when it is expecting a slave response (TE Master signal). The
same is true at the slave since it should only drive the line when responding to a request
from the master.

During the data exchange the master's normal DMX512 cycle framing stops since it waits for
a response from messages for up up 3ms (until the start) before declaring a lost response.

The master's break and MAB timing range in RDM mode is not the same as the DMX512
range but the DMX512 operation can be set to be within a range matching both
specifications.

The slave responds without sending first a break when it responds to discovery message
(DISC_UNIQUE_BRANCH), as shown the previous illustration. It also needs to respond to
requests before the master sends a following break due to the fact that it MUST start a
response within 2.8ms of the end of the master's transmission.
uTasker_DMX512.doc/1.01 13/19 15/08/18

S
lo

t 0
S

lo
t 1

S
lo

t
2

S
lo

t
3

S
lo

t 4
S

lo
t 5

..
.

S
lo

t
X

-1

S
lo

t X
RDM start code 0xcc

S
lo

t 0
S

lo
t

1
S

lo
t

2
S

lo
t 3

S
lo

t 4
...

S
lo

t Y
-1

TE Master

TE Slave

S
lo

t Y

<= 88us

176...352us

12...88us

176us...
2.8ms

<= 88us4..12us

www.uTasker.com µTasker – DMX512

All other slave responses include a break/MAB phase before the data content as
known from the master operation.

The packet format of an RDM frame is the same in both master-> slave and slave->master
directions. It starts with the start code 0xcc followed by a sub-start code and a message
length due to the fact that the messages and responses are not of a fixed length but can vary
each time. It becomes evident from this fact and the response limitations that the slave must
analyse the frame as it arrives and can't use DMA reception to handle only a complete frame;
it must therefore always work in interrupt mode, check the start code and message length
and then handle the frame once the advertised number of bytes have arrived.

The packet format continues with a 48 bit destination UID, a 48 bit source UID etc. as shown
below:

Byte 0: START CODE
Byte 1: SUB-START CODE
Byte 2: MESSAGE LENGTH (including start code and content without check-sum – 24..255)
Bytes 3..8: DESTINATION UID (48-bits)
Bytes 9..14: SOURCE UID (48-bits)
Byte 15: TRANSACTION NUMBER (TN)
Byte 16: Port ID / RESPONSE TYPE
Byte 17: MESSAGE COUNT
Bytes 18..19: SUB-DEVICE (16 bits)
Bytes 20..X-2: MESSAGE DATA BLOCK (MDB) of variable size
Bytes X-1 and X: CHECKSUM (16 bits – sum of all previous bytes in the packet)

Multi-byte data is transmitted in big-endian (network) order.

uTasker_DMX512.doc/1.01 14/19 15/08/18

www.uTasker.com µTasker – DMX512

6. RDM Discovery

RDM supports slave discovery which is usually the first thing that takes place in order to find
out how many slaves are attached and to configure the complete system in order to avoid the
need for manual configuration. It is based on the use of the DISC_UNIQUE_BRANCH
message which allows all slaves that are within the requested branch to respond. Multiple
slave responses will cause collisions (desired in this case) that allow the master to recognise
that 'some' are there and then repeat the requests with ever decreasing scope in order to pin
point where slaves are located (their addresses).

Before starting the discovery the master however sends a broadcast DISC_UN_MUTE
message which allows the slaves to respond to such requests.

After identifying individual slaves the DISC_MUTE command, send to their uni-cast address,
stops them from answering while further discovery is attempted.

The implementation of master RDM operation is based on a state event machine that
temporarily stops the normal DMX512 transmission in preference of RDM transmission.
Since there is often a response expected from slaves that support RDM the DMX512 framing
is disabled (although the same timing is retained and used as a base for the RDM
transmissions themselves).

Following the transmission of a complete RDM frame (from the second stop bit of the final
character) the transmission line is no longer driven, the receiver is enabled, and a timer is
started that corresponds to the maximum time that a slave response would be expected in
(6ms) and the UART receiver buffer is then checked for reception. An reception data
received (even corrupted) counts as a RDM receiver response, whereby no data reception is
counted as no RDM response; this is used during discovery when multiple slaves may
respond and result in corrupted data.

After handing potential responses the receiver is disabled, the transmitter driven again and
either normal DMX512 or following RDM transmissions continue when the next frame allows
it.

uTasker_DMX512.doc/1.01 15/19 15/08/18

www.uTasker.com µTasker – DMX512

7. RDM Reception

RDM reception imposes additional constrains on a slave due to the fact that the slave needs
to recognise the frame type and its length at the start of a reception and respond to RDM
data within a strict time window (176us to 2.0ms from the end of the master's RDM
transmission to returning a response – which is either the start bit of a data character or the
start of a break as received by the master). This means that the break following the data
reception will not be available to terminate the frame. Due to this reasons, slaves that need
to support RDM and not operated in DMA reception mode but instead in receiver interrupt
mode, handling each received data byte immediately in order to be able to achieve accurate
response timing.

The following diagram shows a typical discovery sequence whereby the DMX512 framing is
temporarily interrupted in order to send first a broadcast discovery un-mute command and
then a number of discovery unique branch messages. The first response from the slave
shows a collision resulting (corruption) due to more than one slave responding but the
second (where the master has changed the discovery range that excludes the colliding
slave) is responded to successfully. The master subsequently mutes the responding slave so
that it can continue discovering further devices.

After the mute command has been sent the normal DMX512 framing continues, although
normally the master will probably perform further discovery sequences to find and mute all
slaves that exist.

uTasker_DMX512.doc/1.01 16/19 15/08/18

Master

Slave

DMX512 DMX512 UNMUTE
(broadcast)

DISC DISC MUTE
(unicast)

DMX512 DMX512 DMX512

TE

TE

MUTE
response

Collision DISC
response

www.uTasker.com µTasker – DMX512

8. Conclusion

Provisional version awaiting additional input.

Modifications:

V1.00 3.05.2018: In progress

uTasker_DMX512.doc/1.01 17/19 15/08/18

www.uTasker.com µTasker – DMX512

Reference recordings

Frame, using PWM outputs to mark timing

Close up of start (transmit starts too early in this test)

Using the first PWM to modulate the Tx shows that it is possible to generate a break on the
TX line.

uTasker_DMX512.doc/1.01 18/19 15/08/18

www.uTasker.com µTasker – DMX512

Using PIT to control delays and the LPUART's break generation.

Compared to same but directly controlling the output:

Thi shows a break set/clear generates 43us (10 bits), which is the only possibility in LPUART
(43, 86, 129us etc would be possible by queuing multiple – but timing critical...)

uTasker_DMX512.doc/1.01 19/19 15/08/18

	1. Introduction
	2. DMX512 Frame
	3. DMX512 Transmission
	3.1 UART initialisation
	3.2 Preparing and queueing a DMX512 frame
	3.3 Configuring and starting timer control
	3.4 Interrupt call-backs
	3.5 Application event handling
	3.6 Notes about DMA events
	3.7 Multiple DMA512 Outputs

	4. DMX512 Reception
	5. RDM (Remote Device Management)
	6. RDM Discovery
	7. RDM Reception
	8. Conclusion

