

uTasker_CodeWarrior10.doc/0.0 Copyright © 2012 M.J.Butcher Consulting

Embedding it better...

µTasker Document

• CodeWarrior 10

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 2/11 13.12.2012

Table of Contents
1. Introduction ..3

2. Importing the Project into a Workspace ..4

3. Creating a New Project in the Environment ..8

4. Creating a New Target ..9

5. Configuring a New Target .. 10

6. Conclusion .. 11

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 3/11 13.12.2012

1. Introduction

CodeWarrior 10 is the new IDE from Freescale based on Eclipse which replaces the earlier
CodeWarrior IDE from Metroworks, which Motorola acquired in 1999, and further developed
as Freescale’s (semiconductor spinoff from Motorola in 2003) Developer
Technology Organisation.

The Eclipse platform has become popular in recent years as open-source software
development environment and adopted by many companies, including a number of
semiconductor manufacturers for their development tools; one notable exception however
being ATMEL Corp. who moved away from their AVR32 Studio Eclipse based platform to
their present AVR Studio 6 based on Microsoft Visual Studio (interestingly, the main rival to
Eclipse when IBM first started working on the Eclipse software, which was then made open-
source).

Eclipse is Java based and supports many plug-ins. This means that it often runs quite slowly
and its potentially huge range of capabilities may make it overwhelming when users just want
to do some ‘simple’ embedded development. This is also something that Freescale is aware
of and new CodeWarrior development improves the user experience by streamline its look
and feel and accelerate such things that could be otherwise unnecessarily cumbersome[1].

Eclipse, and thus CodeWarrior 10, works with workspaces. Workspaces are a concept that
can cause difficulties in embedded projects base on the concepts that traditional IDEs use.
For example, it becomes difficult to share common parts of projects (such as libraries)
because the IDE wants to import the source files into its own unique project directory.
However this has been addressed in newer Eclipse releases and so the impacts are not as
serious as they were in earlier versions.

Each company basing tools on Eclipse make specific adaptations which make their solution
either worse of better than competitors. This document specifically looks at the CodeWarrior
10 solution with regards to using it together with the µTasker project. It discusses how to
create a new application in the Kientis project environment (Coldfire projects are equivalent)
and gives tips and tricks to work around remaining caveats.

[1] Freescale’s Jim Trudeau discusses the CodeWarrior development in the following blog:

https://community.freescale.com/community/the-embedded-
beat/blog/2012/09/25/codewarrior-ide-v103-a-whole-new-perspective

While the CodeWarrior 10.3 Beta is discussed there the version CodeWarrior 10.2 (the
official release version at the time of writing) is used here.

For a simple step-by-step guide to building the µTasker project in CodeWarrior see
http://www.utasker.com/docs/KINETIS/uTaskerV1.4_Kinetis_demo.pdf

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 4/11 13.12.2012

2. Importing the Project into a Workspace

When CodeWarrior starts it will ask for a workspace, unless the user has disabled the
question, in which case it will work with the last workspace used.

The first time a new user sees this it may cause some panic because the first question is
what is this workspace? Many IDEs use the same term to save a projects environment
(where files are located, the compiler and debugger settings and user’s editor preferences
etc.) but one generally saves this as a project file or maybe as a workspace and doesn’t
need to specify it before actually doing anything. Many traditional IDEs’ workspace is in fact
simply a file that the IDE uses when starting to restore the user’s or project’s settings, but
CodeWarrior’s workspace is not a file but a location on the PC where it will be working and,
optionally, keeping all of the project’s files.

The µTasker project includes various IDE projects and has the following structure:

The “Hardware” directory contains the main hardware specific

interface (allowing the more general project parts to operate
specifically on the Kinetis), “uTasker” contains the operating

system part, generic drivers, etc. “stack” the TCP/IP stack,

“WinSim” the project’s general simulation support and

“Applications” a number of individual projects (such as
uTaskerBoot and uTaskerSerialBoot).

The “uTaskerV1.4” project is designed to be used as a basis for

new projects by copying it to a new directory (with the project’s)
name and then adapting this to suit the specific requirements.

Each project then contains project setups for a number of popular
IDEs and the “KinetisCodeWarrior” directory is associated

with CodeWarrior10 use, although not in the normal sense, as will
be seen later. As a ‘normal’ example one could take the
“Rowley_Kinetis” project folder and see that it contains the

following files and sub-directories:

This is very much a traditional
project folder that most embedded
developers will be very familiar with.

It contains the IDEs project file
“uTaskerV1.4.hzp” which can be

double clicked to open the IDE itself
and load the specific project. It also
contains some sub-directories
containing object files that were
created when the project was built in
Debug or Release modes.
Conveniently the resulting binary
files and the used linker script files
are also here so that the can be
simply accessed when needed.

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 5/11 13.12.2012

This shows the selection of the workspace, which can be located anywhere on the PC (not
directly related to the location of the project files) and it is worthwhile keeping a track of
where different projects’ work spaces are located in case several independent projects are
worked on.

When CodeWarrior 10 has started it will display a welcome window (this window can be
returned to later by selecting “Welcome” in the “Help” menu.

Choose “Go to Workbench” to go to the C/C++ perspective.

Normally the “CodeWarrior Projects” view is displayed on the left hand side of the

perspective and this is where projects can be imported to by using the mouse right click to
display its context menu and choosing “import”.

When the Import dialog appears select “General

| Existing Projects into Workspace” and

then browser to the location of the µTasker project
on the PC. Select the project’s main director (the
one containing uTasker, Applications, etc.). This
will then show up with its path name and a check
box to show that it was recognised as a valid
project location.

Finally click on “Finish” to perform the import,

whereby it is to be noted that there is a check box
which is off by default:

If this were to be checked the import woudl involve
a copy of the content of the directory into the workspace which probably doesn’t have any
advantages in general use. When the check box is left in its default unchecked state the
source files will be accessed by the CodeWarrior 10 project at their original location.

Once the import has completed the CodeWarrior Projects view will show the uTaskerV1.4
project and it is possible to open a drop down list of its targets as show in the following
screen shot:

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 6/11 13.12.2012

This shows the first difference compared to traditional projects. Rather than having one
project for each application (uTaskerV1.4, uTaskerBootLoader, etc.) there is only one

single project (uTaskerV1.4) which includes the different applications as targets to it (note
that, in this example, the target MK60N512VMD100_BM_BOOT_FLASH is used to build the

uTaskerBootLoader project for a K60 and MK60N512VMD100_INTERNAL_FLASH is used to

build the uTaskerV1.4 project for the K60). The target to be used can be set as active target
in the drop-down list.

When the “Applications” directories are expanded it will be seen that some files are

marked with a green tick and some are displayed as crossed-out:

The target selected controls which of the files and folders in the (referenced) workspace
actually belong to the build and which don’t.

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 7/11 13.12.2012

Looking down inside the KinetisCodeWarrior sub-directory shows that it may not be used to
hold the individual projects themselves but is still being used to keep the linker script files
and also the generated object files and make files (which CodeWarrior automatically
generates based on the target’s files) plus the resulting output elf file uTaskerV1.4.afx.

Although not 100% compatible with the more traditional project management layout the result
is close. It is now possible to share general files between multiple projects and the setup files
and resulting output files are located in equivalent sub-directories to the other IDEs.

There is a complication in that the default output location for files is at the same directory
level as the “Applications” directory. How this is manipulated is described in the following

section which handles creating a new project in this imported project environment.

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 8/11 13.12.2012

3. Creating a New Project in the Environment

The µTasker project is designed to enable its use in new projects, rather than having to start
these with a main() routine and build up the code from various (possibly existing) sources.

The standard technique is to make a copy of the uTaskerV1.4 project in the
“Applications” directory, rename it and start adapting iots configuration to suit the specific

project’s goals, removing or adding source as fit.

Since the CodeWarrior 10 project has been imported but its source files are referenced (not
actually copied and used in the IDE’s workspace) a new project is started by copying the
uTaskerV1.4 (or another existing project directory in the project structure) and renaming the
directory to suit.

The following shows the result after the copied directory has been renamed to
uTaskerApplication (the name of the new project in this example):

When the CodeWarrior Projects view is
refreshed (F5 can be used for this) the
new directory also appears in the
imported project.

If an existing project is now built there will be errors since the new directory will belong to all
targets, therefore the first action is to exclude the new directory from existing target builds.
This is fortunately simple to do by clicking on the directory, selecting the context menu (right
mouse click) command “Resource Configurations | Exclude from Build…” and

then choosing “Select All”:

Note that some Eclipse based IDEs don’t include this practical command and the user needs
to manually exclude every individual file in the directory and its sub-directories which can be
a reason to already give up with the tool…!

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 9/11 13.12.2012

4. Creating a New Target

Normally a new target would be created for a different processor type or to distinguish
between whether the build is to run ion Flash or SRAM, but we use the target as project in
order to allow all projects to co-exist in a single environment and share general code
sources. Creating a new target is very simple too:

Select the project (the top level folder “uTaskerV1.4”) in the CodeWarrior Projects view and

then use the menu “Projects | Build Configuration | Manage…” to open up the

following dialogue:

Select “New…” and enter a name and description for the new target, basing it on the original

one that it is a copy of:

Here it can be seen that a target for operation in internal SRAM has been used as base for
the new configuration. The procedure needs to be repeated for each such ‘real’ target the
new project needs to use.

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 10/11 13.12.2012

5. Configuring a New Target

If the new target is now built it will be found that it is still building the original uTaskerV1.4
project. This is due to the fact that it has inherited the original target’s settings, including the
fact that it is using the content of Applications/uTaskerV1.4 instead of

Applications/uTaskerApplication. To rectify this the command “Resource

Configurations | Exclude from Build…” can be used again on the project’s

directory and this time allow its content to be used by it and exclude the original uTaskerV1.4
folder.

In addition it is necessary to exclude the sub-directory “Simulator”, although it is just as

well to exclude all sub-directories in Applications/uTaskerApplication.

At this point it will be possible to build the target (project) [] but there are some problems
with the target settings and generated target locations that will need to be solved before
being finished. For example, the linker script file being used is still from the uTaskerV1.4

folder and the projects make file and generated output is being located in a directory that the
environment created called uTaskerApplication but at the same directory level as the

directory Applications.

Up until now things have been quite simple but to fix but the last little quirks are a bit more
complicated since we need now to get involved with paths and build settings. The following
step by step guide shows how it is done – it is not particularly pleasant but, if followed
exactly, results in the desired effects.

To enter the project configuration select the project (the top level folder “uTaskerV1.4”) in

the CodeWarrior Projects view and then use the menu “Projects | Properties” to open

up the properties pane:

1 – Create a new path variable for the application in “Resource | Linked Resources |

Path” Variables:

Using the “New…” button enter a path variable for the new project (for example

UTASKER_APPLICATION_LOC) and set it to

PROJECT_LOC\Applications\uTaskerApplication\KinetisCodeWarrior. Note

that PROJECT_LOC is automatically pointing to the source file locations.

This new path variable will be helpful for the next steps.
It is a good idea to save this setting before continuing with the following so that the path
variable is already known.

2 – Correct the output directory for generated files in “C/C++ Build | Builder

Settings” ${ProjDirPath}/uTaskerApplication (this is the default that was created

for the target) to ${UTASKER_APPLICATION_LOC}/MK60N512VMD100_INTERNAL_RAM

(the path variable is important and the target directory can be chosen to suit)

3 – Correct the linker script path in “C/C++ Build | Settings | Tool Settings |

ARM Linker | Input”. For the “Linker Command File” simply replace

${APPLICATION_LOC} by ${ UTASKER_APPLICATION_LOC}

4 – Correct the include file search path in C/C++ Build | Settings | Tool

Settings | ARM Compiler | Input. For the “Include User Serach Paths”

simply replace the path by "${UTASKER_APPLICATION_LOC}\.." – be careful here since

the \.. at the end is important, as are the “” !

5 – Finally change the output file in “C/C++ Build | Settings | Build Artifact”

from uTasker1.4 to utaskerApplication.

www.uTasker.com µTasker – CodeWarrior 10

uTasker_CodeWarrior10.doc/0.0 11/11 13.12.2012

If this if followed carefully and typing mistakes avoided it should now build correctly, using the
headers from the new target directory and the linker script from the new target settings
directory and generate the output file to the appropriate location.

In case of problems it may help to close CodeWarrior 10 once and start again to ensure that
all new paths are being used.

Once successful the project development itself can be continued using CodeWarrior as
editor, build and debug environment.

6. Conclusion

This document explains in detail one method of creating new µTasker projects in the µTasker
project environment using CodeWarrior 10 as IDE.

The method explained uses targets as projects to get around some restrictions imposed by
the Eclipse workspace operation. These methods work well but may not be the best.
Furthermore they may be better methods that could be used in the present version of
CodeWarrior 10 or may become possible in future versions as Eclipse and CodeWarrior itself
are optimised.

Modifications:
- V0.0 13.12.2012 First version

