
Embedding it better...

µTasker Document

Using the µTasker project with i.MX RT with GCC Make File

GCC.doc/1.03 Copyright © 2022 M.J.Butcher Consulting

www.uTasker.com GCC Make for i.MX RT

Table of Contents
1. Introduction..3
2. Building the “Bare-Minimum (BM)” Boot Loader...3
3. Building the “Fall-Back” Serial Loader...4
4. Loading the combined “BM” boot loader and fall-back serial loader to the board...............5
5. Building and Loading the Serial Loader..5
6. Building and Loading the Application...6
7. Security Settings..8
8. Additional Details about the Boot Loader Concept...9
9. Using the Boot Loader with Foreign Applications..11
10. Pre-Configuring FlexRAM for XiP Application usage...19
11. Enabling SDRAM Support if required by the Application or for SDRAM Code Execution
...21
12. Conclusion...22

GCC.doc /1.03 2/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

1. Introduction

This guide uses the MIMXRT1020 as reference setup but all other boards/processors are
effectively equivalent by using their name instead.

It contains a step-by-step guide to configuring the project and building the loader concept, as
well as some tips on solving problems if encountered.

The use of non-uTasker application are furthermore described, which can be simply run in
QSPI-flash, on-the-fly decoded QSPI Flash, SDRAM or internal RAM.

The make file build method can be used from within VisualStudio – see the i.MX RT tutorial
for more details: https://www.utasker.com/docs/iMX/uTaskerV1.4_iMX.pdf

Alternatively the project files can be edited in any editor and cross compiled by executing
their respective bat files.

2. Building the “Bare-Minimum (BM)” Boot Loader

If there is no archive file for the target being developed for this step should be
completed before building the serial loader(s) and application!

The “Bare-Minimim” boot loader code is located in the folder \Applications\
uTaskerBoot\

Configure the target to be used in the project's config.h file – for example
#define MIMXRT1020

In the project's make file (\Applications\uTaskerBoot\GNU_iMX\
make_uTaskerBoot_GNU_iMX) ensure that the floating point setting is correct for the
device; in this case it would be
-mfloat-abi=hard -mfpu=fpv5-d16
For an i.MX RT processor without double-precision FPU (eg. IMX RT 1011) -mfloat-
abi=hard -mfpu=fpv5-sp-d16
is used instead.

The bat file can be edited to produce a dedicated archive file for the target in
question by setting the variable
set iMX_RT=MIMXRT1020

The project can be built by executing \Applications\uTaskerBoot\GNU_iMX\
Build_iMX_RT.bat and results in an output binary file
\Applications\uTaskerBoot\GNU_iMX\uTaskerBoot.bin
as well as an archive file \Applications\uTaskerBoot\GNU_iMX\
uTaskerBoot_MIMXRT1020.bin which is designed to be located in SPI flash and
boot the processor. This image is however never used alone and is combined with
the fall-back loader in the next step.

GCC.doc /1.03 3/22 19/01/22

https://www.utasker.com/docs/iMX/uTaskerV1.4_iMX.pdf

www.uTasker.com GCC Make for i.MX RT

3. Building the “Fall-Back” Serial Loader

If there is no archive file for the target being developed for, this step should be
completed before building the serial loader and application!

Please note that the gcc make file includes a dependancy on the header file
widgets.h, which is not a part of the repository since it is a generated file. This file
is used when the serial loader interacts with a graphic display and is used to embed
images. The file can be generated by executing widgets.bat in the serial loader's
directory – this needs to be peformed only once and its content is not important but it
will then satisfy the make file's check of the header.

The Serial Loader code is located in the folder \Applications\
uTaskerSerialBoot\

Configure the target to be used in the project's config.h file – for example
#define MIMXRT1020
and also configure the serial loader options as required. HW details can be
configured in the project's app_hw_iMX.h file.
Make sure that the define iMX_FALLBACK_SERIAL_LOADER is enabled!

In the project's make file (\Applications\uTaskerSerialBoot\GNU_iMX\
make_uTaskerSerialBoot_GNU_iMX) ensure that the floating point setting is correct for
the device; in this case it would be
-mfloat-abi=hard -mfpu=fpv5-d16
For an i.MX RT processor without double-precision FPU (eg. IMX RT 1011) -mfloat-
abi=hard -mfpu=fpv5-sp-d16
is used instead.

The bat file can be edited to produce a dedicated archive file for the target in
question by setting the variables
set iMX_RT=MIMXRT1020
set fallback=1 <---------- must be set to 1

The project can be built by executing \Applications\uTaskerSerialBoot\
GNU_iMX\Build_iMX_RT.bat and results in an output binary file
\Applications\uTaskerBoot\GNU_iMX\uTaskerSerialBoot_BM.bin

This output is however not used directly because the code is located to execute in
internal RAM (ITC) and its image needs to be saved together with the “BM” boot
loader's image in SPI flash. The “BM” boot loader also performs a validity check of
the code and prepares the processor's RAM memory so that it can execute in an
optimal manner, meaning that the image also needs an authentication header. This
header is added during the bat file build where it is also combined with the “BM” boot
loader's binary file in order to be loaded to the SPI flash. The resulting image is \
Applications\uTaskerSerialBoot\GNU_iMX\
TaskerBootLoaderImage.bin

GCC.doc /1.03 4/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

A combined “BM” loader + Fall-back loader archive image is also created \
Applications\uTaskerBoot\GNU_iMX\
uTaskerFallbackLoaderImage_MIMXRT1020.bin image is also created.

4. Loading the combined “BM” boot loader and fall-back serial loader
to the board

Instructions to using the NXP MCUBootUtility to load the binary image to the target can be
found in the i.MX tutorial, chapter 4:
https://www.utasker.com/docs/iMX/uTaskerV1.4_iMX.pdf

For production work complete images including loadable serial loader application can be
used instead – see outputs of subsequent steps.

5. Building and Loading the Serial Loader

If there is no archive file for the target being developed for this step should be
completed before building the application!

Please note that the gcc make file includes a dependancy on the header file
widgets.h, which is not a part of the repository since it is a generated file. This file
is used when the serial loader interacts with a graphic display and is used to embed
images. The file can be generated by executing widgets.bat in the serial loader's
directory – this needs to be peformed only once and its content is not important but it
will then satisfy the make file's check of the header.

The same method is used to build the programmable serial loader as to building the
Fall-back version (fixed and combined with the “BM” loader) with the exception that
the define iMX_FALLBACK_LOADER must be disabled in config.h.

The bat file can be edited to produce a dedicated archive file for the target in
question by setting the variables
set iMX_RT=MIMXRT1020
set fallback=0 <----------- must be set to 0

Furthermore different loader strategies may be chosen when building it and possibly
other configuration modifications that suit the working serial loader to be used (rather
than the fall-back one).

When built the output uTaskerSerialLoaderUpload.bin results.
This file can be loaded to the board using the fall-back loader, which will
automatically operate when there is not yet a serial loader installed.

A combined “BM” loader + Fall-back loader + serial loader archive image is also
created \Applications\uTaskerBoot\GNU_iMX\

GCC.doc /1.03 5/22 19/01/22

https://www.utasker.com/docs/iMX/uTaskerV1.4_iMX.pdf

www.uTasker.com GCC Make for i.MX RT

uTaskerBootComplete_MIMXRT1020.bin image is also created and can be
loaded using the same techique as discussed in chapter 4.

6. Building and Loading the Application

All previous steps should have been completed in the correct order before building
the application!

The Application code is located in the folder \Applications\uTaskerV1.4\

Please note that the gcc make file includes a dependancy on the header file
widgets.h, which is not a part of the repository since it is a generated file. This file
is used when the application interacts with a graphic display and is used to embed
images. The file can be generated by executing widgets.bat in the application's
directory – this needs to be peformed only once and its content is not important but it
will then satisfy the make file's check of the header.

When this is built the resulting file is \Applications\uTaskerV1.4\GNU_iMX\
uTaskerV1.4_AES256_application.bin which can be loaded with the installed
serial loader.

The bat file \Applications\uTaskerV1.4\GNU_iMX\Build_iMX_RT.bat can
be edited to produce a dedicated archive file for the target in question by setting the
variable
set iMX_RT=MIMXRT1020

It is to be noted that the fall-back loader, the serial loader and the application are
encrypted. The loaders automatically recognise the encryption and decrypt directly to
internal RAM only when the code is used.

uTaskerCompleteImage_MIMXRT1020.bin and
uTaskerCompleteImage_MIMXRT1020.hex outputs contain “BM” loader + “Fall-
back” serial loader + serial loader + application and are useful for production
programming to avoid the need to load the various images individually.
uTaskerCompleteImage_MIMXRT1020.bin can be loaded using the same
techique as discussed in chapter 4.

The application build also outputs a file \Applications\uTaskerV1.4\
GNU_iMX\uTaskerV1.4_XiP_MIMXRT1020.bin
which can also be loaded and executes directly in QSPI flash. It is not encrypted and
is a reference to show that code can also run directly from flash, which would usually
only be of relevance when the code size exceeds the internal RAM size.
When this file is used, rather than uTaskerV1.4_AES256_application.bin the
linker script file (in make_uTaskerV1.4_GNU_iMX) should be changed from
iMX_RT_10XX_FlexSPI_NOR to iMX_RT_10XX_FlexSPI_NOR_XIP.

GCC.doc /1.03 6/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

The acceptance of non-encrypted application is a configuration of the serial loader. If
plain-code application are disabled this file wil not be accepted.

Applications\uTaskerV1.4\GNU_iMX\
uTaskerV1.4_XiP_MIMXRT1020_ota.bin
is a further file created that is encrypted for on-the-fly decryption (it is in the correct
format for BEE or OTFAD methods, depending on the i.MX RT target selected). This
can be loaded by the serial loader and results in secure operation directly for QSPi
flash.

GCC.doc /1.03 7/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

7. Security Settings

Note that some bat files contain additional variables:
set SECRET_KEY="aes256 secret key"
set VECTOR="initial vector"
set MAGIC=234
set AUTHENTICATION=a748b6531124

- SecretKey is the AES256 (AES128 key is also derived from it when on-the-
fly XiP is used) used to encrypt the code.
- Vector is the AES256 initial vector (AES128 nonce is also derived from it
when on-the-fly XiP is used)
- Magic is the project/product's magic number which is used to ensure that all
firmware files that are received are intended for this product
- Authentication is an embedded key that is used to authenticate all firmware
files that are received
These variables are used to control the tools that generate the versions for
uploading purposes and should match with the values in the “BM” boot loader
and serial loader code:

#define PROJECT_APPLICATION_MAGIC_NUMBER 0x0234 // first nibble should be 0 -
the magic number is a simple check in the new code's header to verify that it is
intended for our product
#define APPLICATION_AUTHENTICATION_KEY {0xa7, 0x48, 0xb6, 0x53, 0x11, 0x24} //
the new code's CRC is calculated and then this added in order to detect both code
errors and code not was not processed with our authentication key
#define APPLICATION_AES256_SECRET_KEY "aes256 secret key" // the secret key
used to encrypt the code content (before adding its header) - this, and the initial
vector, should be kept secret in order to ensure security (up to 32 bytes in length)
#define APPLICATION_AES256_INITIAL_VECTOR "initial vector" // the initial vector
used when encrypting the code (up to 16 bytes in length)

GCC.doc /1.03 8/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

8. Additional Details about the Boot Loader Concept

The µTasker loader concept can essentially be used with any application and this
application can either execute directly from QSPI flash or be copied to internal RAM
for execution. It can also be encrypted (and decrypted by the loader to internal RAM
where it securely runs).

The following options are available, which are communicated to the loader via the
application header's magic number. This is added to the application by using the
µTasker utility uTaskerConvert.exe

Eg.
uTaskerConvert.exe uTaskerV1.4_BM.bin uTaskerV1.4_application.bin -0x1234 -
a748b6531124

The magic number is a 16 bit value whose first nibble indicates its format:
#define BOOT_LOADER_TYPE_PLAIN_XiP_RESET_VECTOR 0x0000 // execute in QSPI flash
(execute in place) starting with reset vector
#define BOOT_LOADER_TYPE_PLAIN_RAM_EXECUTION 0x1000 // copy plain code to ITC
and execute there
#define BOOT_LOADER_TYPE_PLAIN_XiP_CONFIG_TABLE 0x2000 // execute in QSPI flash
(execute in place) starting with configuration table
#define BOOT_LOADER_TYPE_PLAIN_SDRAM_EXECUTION 0x3000 // copy plain code to SDRAM
and execute there
#define BOOT_LOADER_TYPE_AES256_SDRAM_EXECUTION 0x4000 // decrypt AES256 encrypted
code to SDRAM and execute there
#define BOOT_LOADER_TYPE_AES128_XiP_RESET_VECTOR 0x5000 // execute in QSPI flash
(execute in place) starting with reset vector using on-the-fly decryption
#define BOOT_LOADER_TYPE_AES128_XiP_CONFIG_TABLE 0x6000 // execute in QSPI flash
(execute in place) starting with configuration table using on-the-fly decryption
#define BOOT_LOADER_TYPE_AES256_RAM_EXECUTION 0x9000 // decrypt AES256 encrypted
code to ITC and execute there

Therefore
0x1234 is a magic number of 0x0234 which should be copied to, and executed in
internal RAM (it is linked to the address 0x300)

0x9234 is a magic number of 0x0234 which should be copied to, and executed in
internal RAM (it is linked to the address 0x300). The image is additionally AES256
encrypted and the boot loader uses the project's AES26 secret key and initial vector
value to decrypt it during the copy

0x0234 is a magic number of 0x0234 which is executed directly from QSPI flash.
The application should be linked to 0x60020400 (the exact value may change with
loader type and QSPI flash used) and starts with its reset vector. No flash
configuration block is used.

0x2234 is a magic number of 0x0234 which is executed directly from QSPI flash.
The application should be linked to 0x60020400 (the exact value may change with
loader type and QSPI flash used) and starts with flash configuration block. The flash
configuration block is interpreted in order to find the vector location containing the

GCC.doc /1.03 9/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

applications reset vector.

0x3234 is a magic number of 0x0234 which should be copied to, and executed in
external SDRAM (it is linked to the address of the external SDRAM). It can locate its
interrupt vectors either to the start of SDRAM or else to interal RAM.

0x4234 is a magic number of 0x0234 which should be decrypted and copied to, and
executed in external SDRAM (it is linked to the address of the external). It can locate
its interrupt vectors either to the start of SDRAM or else to interal RAM.

0x5234 is a magic number of 0x0234 which is AES128 encrypted and executes
directly from QSPI flash (using on-the-fly decryption). The application should be
linked to 0x60020400 (the exact value may change with loader type and QSPI flash
used) and starts with its reset vector. No flash configuration block is used.

0x6234 is a magic number of 0x0234 which is AES128 encrypted and executes
directly from QSPI flash (using on-the-fly decryption). The application should be
linked to 0x60020400 (the exact value may change with loader type and QSPI flash
used) and starts with flash configuration block. The flash configuration block is
interpreted in order to find the vector location containing the applications reset vector.

GCC.doc /1.03 10/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

9. Using the Boot Loader with Foreign Applications

Although it is hoped that also the uTasker application will be found to be a more
advanced solution than the traditonal semiconductor manufacturer's framework
(SDK) the uTasker loader can be used with applications from any source.
Important – if SDK code requires SDRAM access please also consult the following
chapter detailing enabling SDRAM configuration in the boot loader.

This section explains how an existing MCUXpresso project that is running in QSPI
flash (XiP) can be very simply used as an upload file to the uTasker loader in either
plain code (unencrypted) or on-the-fly encrypted form with almost no development
effort.

1. The easiest method of allowing the original code and an uploadable version
to be managed in MCUXpressor is to create a new target clalled “Upload”.
This is simple to do by making a copy of the orignal target – eg. “Debug”. In
the menu “Project | Build Configurations | Manage...” create
the new target as a copy of the original one.

Here the new target is seen with a description explaining how it is linked and is
set as the active configuration:

2. This target will initially build identically to the original one and can now be
modified to generate an uploadable version fo the same project.

The first modification is to adjust the memory map so that the code is linked to
run from the uTasker loader's application address, which is usually
0x60020400 (0x70020400 for i.MX RT 1064 running in internal QSPI flash).
This is performed in the target properties C/C++ Build → MC Settings:

Here it is seen that the normal program start address (0x60000000) had been
changed to 0x60020400 and the size of the flash is reduced accordingly.

GCC.doc /1.03 11/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

Note that the offset of 0x400 ensures both library and interrupt vector compatibility,
when the vectors are in QSPI flash. A value fo 0x200 is also possible with the i.MX
RT 1011 since it has less vectors, but generally a fixed layout is used to avoid any
potential confusion.

3. In the Post-build steps option the binary output is enabled and a bat. file call
added:

The line "${ProjDirPath}/generate.bat" "$
{BuildArtifactFileBaseName}" is new and will cause the post build step to be
executed each time the target is successfully build. This bat file is explained later.

GCC.doc /1.03 12/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

4. A bat file named “Generate.bat” can be created in the root directory of the work
space (eg. Where the IDE's .cproject and .project files are located) with the
following content:

SET PATH=%PATH%;C:\Repositories\uTasker-GIT-Kinetis\Tools

rem - select the target being built for in order to automate
combining production file

set SECRET_KEY="aes256 secret key"
set VECTOR="initial vector"
set MAGIC=234
set AUTHENTICATION=a748b6531124

rem - generate uploadable version (plain code)
uTaskerConvert.exe %1.bin %1_XiP.bin +boot_header.txt -
0x0%MAGIC% -%AUTHENTICATION%

rem - encrypt for OTF XiP operation
rem - used by OTFAD
uTaskerConvert.exe %1.bin %1_OTFAD.bin E=128-60020400 $
%SECRET_KEY% $%VECTOR%
uTaskerConvert.exe %1_OTFAD.bin %1_XiP_OTFAD.bin
+boot_header.txt -0x5%MAGIC% -%AUTHENTICATION%
del %1_OTFAD.bin

rem - used by BEE
uTaskerConvert.exe %1.bin %1_BEE.bin E=128B-60020400 $
%SECRET_KEY% $%VECTOR%
uTaskerConvert.exe %1_BEE.bin %1_XiP_BEE.bin +boot_header.txt -
0x5%MAGIC% -%AUTHENTICATION%
del %1_BEE.bin

a. The path to the uTasker tools directory is set as a path variable to match its
location on the PC
b. The variables (SECRET_KEY, VECTOR etc.) should match the ones used by the
uTasker loader configuration
c. Note that the magic number's first digit is set to 0 in this case when the plain code
output is converted since the content starts with a reset vector and not with a boot
configuration, in which case it would be 2 instead. A non-encrypted file called
XXXX_XiP.bin is created which is suitable for uploading to the board via the
uTasker serial loader, where XXX is the name fo the MCUXpresso project.
d. Two encrypted output files are created – one which can be used by processors
with OTFAD (like the i.MX RT 1011) and one that can be used by processors with
BEE (most others): These output files are called XXXX_XiP_OTFAD.bin and

GCC.doc /1.03 13/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

XXXX_XiP_BEE.bin.
e. Note that the magic number's first digit is set to 5 in the case of the 'on-th-fly'
encryption versions which signals that the content starts with the reset vector and not
a boot configuration, in which case it would be 6 instead.

5. Note that the bat file uses a boot configuration header file called
boot_header.txt, which should also be added to the same directory. This header
is added before the content of the application XiP code in order to ensure that it is
aligned on a boundary that is both suitable for AES128 decryption and also for
interrupt vectors to remain being located in QSPI flash (requiring a 1k byte alignment
in order to be able to use all possible vectors).

The content of this file can be:

// We add 760 bytes of padding between the header and the start
of code in order to
// align the code on a 1k (0x400) byte boundary (ensures on-
the-fly decryption compatibility,
// library compatibility and also allows interrupt vectors to
remain in code)

02f8 // first two bytes specify the length
ffffffffffff
ffffffffffffffff // padding should be 0xff by default
ffffffffffffffff // and other content is reserved for
future
 // control of additional configurations
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

GCC.doc /1.03 14/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff

GCC.doc /1.03 15/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

ffffffffffffffff
ffffffffffffffff
ffffffffffffffff
ffffffffffffffff

GCC.doc /1.03 16/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

In the MCUXpresso workspace output target directory the following binary files would
be found in the case of building the SDK's blinky project for the i.MX RT 1015:

The first is the build's binary output, which can not be used in this form, and the
following ones are suitable for uploading to the board via the uTasker serial loader as
either plain-code or on-the fly encrypted forms. The serial loader recognises the
content and automatically configures the on-the-fly decryption modules accordingly
(as well as securely managing the AES128 keys) without any further effort on behalf
of the developer.

An optional step to allow interrupt vectors to run from ITC, if not the present case,
can be performed by adding a pre-processor define called UTASKER_LOADER to the
C/C++ Build Pre-processor settings:

which will allow some code changes to be made that are only valid when this
particular target is built.

GCC.doc /1.03 17/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

In the project's system initialisation – eg. system_MIMXRT1015.c - code is added
that copies the vectors to RAM when the board starts and sets the vector offset
register accordingly:

uint32_t SystemCoreClock = DEFAULT_SYSTEM_CLOCK;

/* --
 -- SystemInit()
 -- */

void SystemInit (void) {
#if ((__FPU_PRESENT == 1) && (__FPU_USED == 1))
 SCB->CPACR |= ((3UL << 10*2) | (3UL << 11*2)); /* set CP10, CP11 Full Access
*/
#endif /* ((__FPU_PRESENT == 1) && (__FPU_USED == 1)) */

#if defined UTASKER_LOADER
 {

 extern uint32_t g_pfnVectors[]; // Vector table defined in startup code
 int i = 0;
 volatile uint32_t *ptrRam;
 uint32_t *ptrVectors = g_pfnVectors;
 SCB->VTOR = 0; // address of tightly coupled instruction RAM
 ptrRam = (volatile void *)SCB->VTOR;

 while (i++ < 0x300/sizeof(unsigned long)) {
 *ptrRam++ = *ptrVectors++; // copy the vectors from flash to RAM
 }
 }
#elif defined(__MCUXPRESSO)
 extern uint32_t g_pfnVectors[]; // Vector table defined in startup code
 SCB->VTOR = (uint32_t)g_pfnVectors;
#endif

This makes interrupt execution faster than when the vectors are left in QSPI flash
and the technique can be used generally too and not be made dependent on the
“Upload” configuration. It does also require the SRAM_ITC setting to be adjusted to
make space for these as follows:

GCC.doc /1.03 18/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

10. Pre-Configuring FlexRAM for XiP Application usage

This section shows how to configure alternative FlexRAM configurations for XiP
application usage that are performed by the boot loader without requiring application
code level configuration or eFuse settings:

Although application start-up code can configure alternative FlexRAM configurations
this may prove unnecessarily complicated, involving assember and needing to
carefully understand the technique involved.

When working with the µTasker boot loader this becomes child's play since the
application developer can simply define the layout that the application would like to
be started with and it will be pre-configured for it, thus requiring no special code in
the application.

The application's reset vector can even directly use FlexRAM areas that would
normally not be possible without configuring with eFuses (which is a one-shot
process that cannot be reverted and so preferably avoided).

Normally (without any special configuration) the XiP application is started by the
µTasker boot loader with the FlexRAM configured in its default state. For example,
an i.MX RT 106x would have 128k DTC, 128k ITC and 256k OCR (plus a further
512k fixed general purpose OCR2 RAM).

If the application would prefer – for example - to have 96k DTC, 256k ITC and 160k
OCR (whereby the configurable bank size is always in units of 32k) the following
setting change in the boot_header.txt file configuration (see chapter 9 for its
details) will instruct the µTasker loader to prepare it.

First consider the standard header file content:

02f8 // first two bytes specify the length

ffffffffffff // padding should be 0xff by default and
other content is reserved for future control of additional
configurations

ffffffffffffffff

ffffffffffffffff

followed by further ff padding bytes

....

This has no instructions and serves purely as padding to ensure the application
alignment is correct on a suitable address boundary.

GCC.doc /1.03 19/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

In comparison, this one has the desired FlexRAM configuration:

02f8 // first two bytes specify the length

030805ffffff // specify DTC/ITC and OCR bank sizes to be
pre-configured for the application (when not ff)

ffffffffffffffff

ffffffffffffffff

followed by further ff padding bytes

....

3 banks to be assigned to DTC, 8 to ITC and 5 to OCR

The µTasker boot loader will perform the FlexRam configuration according to the
specified bank quantities. In addition, assuming DTC hasn't been set to 0, it will
ensure that the boot mail box is located in the highest DTC bank so that the
application can communicate with the loader via the highest DTC memory locations.
Note that the mail box area also contains some useful information and counters
maintained by the loader, such as the last reset cause, how many times the board
has been restarted due to watchdog resets and general resets.

No further application effort is required, making this a very simple, fast and painless
way to achieve an XiP based application's preferred FlexRAM layout.

GCC.doc /1.03 20/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

11.Enabling SDRAM Support if required by the Application or for
SDRAM Code Execution

If the application is run from SDRAM the boot loader must include support for this
and also configure the SDRAM operation.

If the application requires SDRAM access the application can either manually
configure the SDRAM in its start-up code before accessing it for the first time or else
the boot loader can generally configure it. When the boot loader configures it it does
so by adding a DCD (Device Configuration Data) table to its configuration code which
defines the registers that the ROM LOADER should write to before the loader is
started. The setup is retained when subsequent applications are started so that they
can benefit from pre-configured SDRAM operation too.

Note that SDK application users requiring SDRAM access will find it simplest
to enabled the configuration in the loader and therefore enabling

#define BOOT_LOADER_SUPPORTS_SDRAM // enable when the boot loader is to configure
SDRAM for subsequent application use (or when application runs in SDRAM)

for the target HW in the „uTaskerBoot“ project is recommended for both
simplicity and to ensure that unconfigured SDRAM doesn't otherwise cause
hard faults when access is attempted by the application.

GCC.doc /1.03 21/22 19/01/22

www.uTasker.com GCC Make for i.MX RT

12. Conclusion

This document has detailed the steps necessary to build the µTasker Boot Loader
and an application from GCC make files (using bat file) or as post-build make file
step from Visual Studio.

GCC.doc /1.03 22/22 19/01/22

	1. Introduction
	2. Building the “Bare-Minimum (BM)” Boot Loader
	3. Building the “Fall-Back” Serial Loader
	4. Loading the combined “BM” boot loader and fall-back serial loader to the board
	5. Building and Loading the Serial Loader
	6. Building and Loading the Application
	7. Security Settings
	8. Additional Details about the Boot Loader Concept
	9. Using the Boot Loader with Foreign Applications
	10. Pre-Configuring FlexRAM for XiP Application usage
	11. Enabling SDRAM Support if required by the Application or for SDRAM Code Execution
	12. Conclusion

