

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 1/12 8.7.2007

Introduction

The µTasker supports an optional single user FTP. This operates always in active FTP mode
and optionally in passive FTP mode. The basic idea of using FTP is not as a data server
where a multitude of users can store or collect large amounts of data, but rather as a
practical and comfortable method for developers who would like to do such things as
modifying HTML files for use by the web server or collect data files with recordings registered
by the application. Of course this can also be useful for general users who may want to also
perform their own web site modification (for example to translate text to another language),
without needing to be able to recompile these changes in the main project code.

Depending on exact requirements, the FTP server can be set up to allow uploads,
downloads and deleting files from the µFileSystem, which is usually in internal FLASH but
can also be in an external device connected via SPI.

The FTP server either accepts anonymous login or else can check user name and password
credentials.

This document is valid for the µTasker project from V1.3 with SP with passive support.

How does FTP work?

Before looking at how to set up the FTP server it may be worth while reviewing how FTP
operates [FTP is specified in RFC 959]. The first thing to know is that it uses TCP
connections on the standard FTP command port 21, and the server listens for a connection
from an FTP client, such as Internet Explorer or Firefox (FireFTP), or other favourite ones, or
even the FTP DOS command line client.

The client establishes a TCP connection with the server and the server responds with a
message with the code 220. This is basically signalling that it is available and will accept a
login, together with a human readably welcome message – for example “Welcome M5223X
FTP” when operating on the M5223X Coldfire.

The client will now send its user name, which is either a real user name or the anonymous
user name “ANONYMOUS”. The FTP server responds with the code 331, signalling that a
password should now be entered. If the µTasker FTP server is configured to accept
anonymous login (not require authentication) it will always accept the anonymous user with
any password.

If configured to not accept anonymous login (for example to increase security against other
people making changes in the file system) a pop-up will normally appear to prompt the user
to enter his/her user name and password. Most Browser based FTP clients will automatically
attempt anonymous login and so immediately provoke the pop-up, although some will also
offer session management where the user name/password pair are automatically entered.

Note that it is also possible to automatically enter the address with a user name and
password by using the following syntax in the FTP client browser address line:
 ftp://ADMIN:uTasker@192.168.0.3

where the user name and password are ADMIN and uTasker respectively, which are the
default values in the µTasker demo project. The user name and password disappear once
the connection attempt has been stared.

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 2/12 8.7.2007

A successful login with be acknowledged by the code 230.

Once the FTP command connection has been established and the user has successfully
logged in, the FTP process continues with some negotiation of options. Exactly what takes
place depends on the FTP client in use but typically the system type will be requested and
the data mode will be set to Image type (binary). The FTP client may try to move to a certain
directory in the file system and activate Passive mode of operation – but we don’t want to get
stuck in the details here. As mentioned in the introduction, the idea of the µTasker FTP
implementation is not to enable a full-blown FTP server to operate but instead to use the
useful properties of FTP for our work. For this reason most of these command and requests
are simply acknowledged in a way that enables the start up sequence to get to a workable
state. If there are unknown commands received, these are simply acknowledged with the
unknown command (syntax error) code 500, which allows the command to be ignored.

Typically the FTP client will start by send a directory listing request (LIST) so that the present
contents of the directory can be viewed. This listing illustrates the use of the FTP data
connection, where the exact details of operation depend on the FTP Active/Passive mode
setting. The operation of both of these modes is now shown:

Active FTP mode

The active FTP mode is the default mode of operation for FTP servers. If the client does not
switch the mode to the passive mode, this is the mode which will be used.

When data - rather than commands - is to be exchanged, a data connection is required. This
is a second TCP connection on the well known port 20. This second connection is
established for the period of data transfer and so is used in the directory listing to send the
actual listing itself.

The active mode means that the FTP server should actively open the data port. In order to
be able to do this, it must know the IP address of the client and also the port number that the
client will accept the data at. Don’t forget that the server has a FTP data socket which will
use the well known port address and needs a unique data port as destination for the
connection. The FTP client also has to set a temporary listening socket to this port number
and informs the server of the details be using the PORT REQUEST command over the FTP
command connection.

Here is an example of the PORT REQUEST for clarity:

“PORT 192,168,254,21,21,42\r\n”

This string request contains the IP address 192.168.254.21 followed by 21,42. This is
interpreted as the port number of the temporary listening socket (21 * 256) + 42 = 5418, so it
is telling the server to use the address 192.168.254.21:5418 for the FTP data connection
when sending the directory listing.

The server will now establish a TCP connection to this port, send the data (a directory listing
in this case) and then close the data connection. The FTP data connection thus exists only
during data transfers, whereas the FTP command connection is a permanent connection (up
to program termination or any time out durations).

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 3/12 8.7.2007

Passive FTP mode

When the client specifies the Passive FTP mode of operation, the server switches to this
mode and data connections operate a little differently.

In the passive mode, the FTP server doesn’t actively establish FTP connections but leaves
this to the client. The Firefox browser for example always uses Passive mode of operation (I
haven’t been able to find a method of configuring it to use active FTP) whereas the Internet
Explorer can be set up to operate with either of the two modes. Note however that the Firefox
browser will only allow the files at the FTP server to be viewed and downloaded, for more
useful operation it requires the FireFTP add-on. Browers types (FTP clients) will be
considered in more detail later in this document.

The FTP client requests the passive mode by sending the PASV command over the FTP
command connection. The server responds with the 227 response which includes details of
the port for use during the data transfer.

Eg: “227 PASV Mode (192,168,0,3,117,74).\r\n“

The server indicates its IP address and the port which it is listening on – in this case
192.168.0.3:30026 – so that the client can ’actively’ establish the connection. In this case
the client and server use random port numbers and the well known FTP data port is not
actually used(!).

Once the data connection has been established, the server transfers the data - in this case
the directory listing - and closes the data connection again.

It is thus seen that the passive and active modes refer to the activity of the server when
establishing the FTP data connection. The passive side listens on a temporary FTP data
socket, the details of which were transmitted either in the PORT request or in the answer to
the PASV request. Once data transfer has completed (the transfer operation itself is not
dependant on the mode) the data connection is closed again.

Also most FTP servers have an inactivity timeout period after which the FTP command
connection is terminated.

Other activities, such as uploading and downloading data or deleting data, involve a
sequence of data connections. Typically there is an initial LIST request followed by a data
transfer or file deletion and afterwards another LIST request to ensure that the FTP browser
knows the present directory contents.

Now that the basic operation has been discussed, the use of the FTP service in the µTasker
project can begin…

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 4/12 8.7.2007

Configuring the FTP server support

In order to use FTP in a project it must first be included by setting the define USE_FTP in
config.h. This will activate demo code to configure and start the FTP server as well as
activate the contents of ftp.c.

The following basic FTP defines exist, with which code can be saved if certain features are
not required:
#define FTP_USER_LOGIN // enable user/password authentication support

When this define is not set, the FTP server will not require authentication and thus will
accept anonymous login. When set, authentication is supported – however whether
authentication is actually used can be set as a configuration option when starting the
server (this allows user configuration changes).

#define FILE_NAMES_PER_FTP_FRAME 6 // limit size of buffers required to
 display files to this many names (remove to use maximum possible)

When performing a directory listing, the directory content is sent in a number of TCP
frames (the exact number depends on the number of files to display). This value can be
used to control the number of file descriptions packed into each TCP buffer and thus
control the buffer length used. In systems with relaxed memory restrictions simply
remove this and full length TCP frames will always be used.

#define FTP_SOCKETS 2 // reserve 2 TCP sockets for command and data

This allocates 2 TCP sockets to the TCP socket pool for use by the single user FTP
server. This must therefore always be defined.

#define FTP_SUPPORTS_NAME_DISPLAY // show details of files

Directory file contents will be displayed as normally viewed in a directory listing. By
removing this define, file display will be removed and the available files simply counted.
This option is generally necessary for normal operation.

#define FTP_SUPPORTS_DELETE // enable delete of files via FTP

If files do not need to be deleted via FTP this option can be removed.

#define FTP_SUPPORTS_DOWNLOAD // support read of files via FTP

If files are not to be transferred from the embedded system to the FTP client this option
can be removed. It will still be possible to upload files to the FTP server but not to copy
them back.

#define FTP_VERIFY_DATA_PORT // check that the data port is valid when in
 active mode

It has been found that the DOS FTP client sometimes send the PORT command with an
IP address of 0.0.0.0 and data port 0. To avoid this resulting in the connection stalling
while waiting for this invalid data connection to be established, the option checks for
this case and informs the FTP client that the data port can not be connected.

#define FTP_PASV_SUPPORT // enable passive mode support

This option enables the FTP server to also support the passive transfer operation. If not
set, the FTP server will reject the passive command and the FTP client will often simply
continue in active mode - However there may be some FTP client policies which will fail
if the passive mode is rejected!

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 5/12 8.7.2007

Starting the FTP server

To start the FTP server use:

extern void fnStartFtp(unsigned short usFTPTimeout,
 unsigned char ucFTP_operating_mode);

usFTPTimeout is the connection timeout in seconds. A value of 0xffff will be interpreted as
infinite.

ucFTP_operating_mode can be either 0 or FTP_AUTHENTICATE, to demand user
authentication rather than accept anonymous login. The demo project uses the user name
and password in the parameter block (cUserName[] and cUserPass[]) to authenticate
with. The default setting is ADMIN and uTasker.

To stop the FTP server use:

extern void fnStopFtp(void);

It is possible to start and stop the server as desired, each time changes to its mode of
operation can be performed. This can be useful for absolute file security. If the FTP server is
not started, or is stopped, it is not possible to access it and so it becomes totally safe. FTP
authentication is not very secure since it uses plain text name and password which can be
quite simply eavesdropped.

That is all there is to it. FTP is otherwise fully autonomous. It has its jobs to do, which are
basically to allow files to be transferred between the FTP client and the file system and
doesn’t need any further application interaction to get these jobs done.

Using FTP clients

Now this is the trickier bit!

FTP clients are not all the same and this can cause some difficulties. Therefore the µTasker
FTP server has been developed with a few goals and a few FTP clients in mind. Although it
works well with most FTP clients, not all have been fully tested and there may be possible
issues which are not know in these cases. If your favourite FTP client doesn’t work, or not as
well as you would like, please make an Ethereal recording of what happens and send this to
one of the µTasker support addresses. There is often an explanation or a fix can be made to
sort it out.

Not all FTP clients are perfect either (surprise, surprise!!) so there are also a few
workarounds to ensure that know problems with these are also avoided. In the following
section three well know FTP clients are detailed and tips and tricks given to ensure that your
project works well with their or µTasker implementation quirks…

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 6/12 8.7.2007

DOS FTP client

When all else fails, this is not a bad little tool to do simple tests and even get real work done.
It is included in DOS and can be started from a DOS command shell. It can also be called
from a script in order to automate file loading or performing tests.

This screen shot shows a login (note that the password [Kennwort on the German DOS
version] is not displayed) after entering the ftp command to the IP address 192.168.0.3. A
simple ‘dir’ request causes a directory listing to be returned. The ‘quit’ terminates the
session.

Using ‘help’, the FTP commands are displayed and files can be transferred using PUT or
GET, depending on the direction, or deleted using DEL.

Notice that the response codes and human readable comments are visible. This includes the
220 welcome message. This can be customised by setting the string define
FTP_WELCOME_RESPONSE in your app_hw_xxxx.h header.

Here is an example of a batch file* content which performs repeated tests of a command file
which transfers various files.

ftp -s:"ftp_cmds.txt" -A -w:256 192.168.0.3

The file ‘ftp_cmds.txt’ contains commands such as

binary
dir
put "0Main.html"
put "3Stats.html"
put "6_I_O.html"
dir
quit

which does some listings and file transfers before terminating the FTP connection.

*Thanks to S.T. of CA USA for the input to this one!

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 7/12 8.7.2007

Internet Explorer

The Internet Explorer 6 (IE6) includes a full featured FTP client. To connect to the FTP
server simply enter an FTP address rather than an HTTP address and the FTP connection
takes place automatically. The connection is attempted using anonymous login and if this
fails a pop-up appears allowing a user name and a password to be entered.

The Passive mode can be configured under extended internet options. If the passive option
is disabled in the µTasker project configuration IE will automatically fall back to the active
mode even if passive support is defined.

To connect, simple enter the FTP address – eg. ftp://192.168.0.3 as shown in the address
field below.

In IE, an empty µFileSystem will be displayed by a dummy file called –r Empty. This is used
by µTasker to show clearly that no files have been loaded as well as to avoid a small
difficulty in the FireFTP program (see later).

The nice thing about IE 6 is that it works well with the µTasker FTP server in anonymous
mode (i.e. without authentication) and allows simple file transfers using ‘drag-and-drop’. This
is generally very practical for development word.

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 8/12 8.7.2007

The problems with IE6 are these:

1. If you try to connect to a none-existent FTP server address the thing will more or less hang
while trying to connect. The same is true when a connection is lost (for example when a
break point is set at the target and so the TCP connection times out). One trick which often
works is to click on the back button so that it returns to the previous explorer page rather
than seemingly no longer reacting.

2. Authenticated login only works well when the user name and address are entered together
with the FTP address.

This screen shot shows the pop up for login when anonymous login is not allowed:

The text is German due to the operating system used but you should get the idea. The login
works fine but for some reason the sequence uses two FTP connections (not supported by
the µTasker FTP server). The first connection performs the log in and then a second
connection logs in parallel with the existing connection using the, now known to be good,
credentials. The first connection then remains open but unused. The µTasker FTP server will
reject the second connection and so, although logged in, the connection is useless.

If a short FTP connection timeout is set (remember the define when starting the server) the
first connection will timeout and the connection can then be re-established after a short wait,
where it will immediately be successful using the known credentials. In fact once the IE 6
Browser instance knows the credentials, all further work is fine until the Browser is
terminated.

To get around the problem described above when authentication is desired, simply connect
using the address ftp://ADMIN:uTasker@192.168.0.3 . In this case the credentials are
immediately made known to the Browser and the initial login uses them and so avoids the
‘double- connection’ issue.

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 9/12 8.7.2007

Internet Explorer 7

Newer versions of Windows are ‘forced’ to use Internet Explorer 7 and it is also not possible
to have another Internet Explorer version (like IE 6) installed at the same time.

IE 7 is rather different to IE 6. It logs on nicely to the FTP server and displays the files in the
file system but doesn’t allow FTP work as known from IE 6 without taking further steps. It is
necessary to first enable the option “Activate FTP Folder View (outside of Internet Explorer)”
after which it is possible to click on “Open FTP-Site in Windows-Explorer”. This in turn opens
another FTP window which is more or less the same as the IE 6 FTP window and allows
‘drag-and’drop’ work as with IE 6.

There is however a catch. The second window requires a second FTP connection (the first
window is still connected) and so will be rejected by the µTasker FTP server (it is single user
don’t forget). The way to get around this difficulty is to configure a short FTP connection time
out of a few seconds so that the first connection effectively times out by the time the second
windows gets opened and then all works fine. Using IE with quite short timeouts (say 5s) is in
fact no problem since the browser simple re-establishes a connection when it is needed,
which is invisible to the (normal) user.

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 10/12 8.7.2007

FireFox and FireFTP

Firefox is a great browser but its standard FTP client is not very useful for transferring files. It
also only works in Passive mode (it will also not fall back to active mode if the passive
connection is rejected) so it is advisable to activate passive support in the µTasker FTP
server if the FireFox FTP (file viewer) is to be used. It is not possible to upload or delete files
from the FTP (file viewer) but there is an add-on called FireFTP which can be installed from
the Mozilla Web site (try the following direct connection:
https://addons.mozilla.org/de/firefox/addon/684). And it is not bad at all!! It transforms
FireFox into a good FTP management tool.

An account can be managed including setting passive / active support and user
name/password combination which will automatically be used.

Here is a screen shot of it being used:

As can be seen, the local directories are at the left of the screen and the FTP server
directories are at the right. An account called uTaskerSim has been created in passive mode,
including the user credentials which are sent on link establishment (where ‘Disconnect’ can
be seen, there was ‘Connect’ to establish the link).

Files can be deleted and dragged from the left to right sides, and vice versa, or transferred
by selecting and clicking on the direction arrows. The commands and responses can be seen
in the log window (if not disabled) and there are lots of potentially useful configurations in the
account manager. All in all very useful…

There are however a couple of points to note:

1. The FTP server timeout should not be set very short (as is useful for IE 7 for example)
since FireFTP keeps re-establishing the connection after timeouts even if there is no work to
be performed. It requires an open connection to work and doesn’t automatically establish one
when needed (like IE does). Maybe there is a setting to allow this but I haven’t been able to
find it (yet).

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 11/12 8.7.2007

2. FireFTP doesn’t like the empty directory method used by the µTasker FTP server. It
actually fails to operate correctly if the dummy file ‘Empty’ (as used in previous µTasker
versions) is displayed but does work fine when there are ‘real’ files to be displayed. It was
found that it is also necessary to have some file attributes associated with the ‘dummy’ file to
avoid the problem. For this reason the empty dummy file has been re-defined to “–r Empty”.
FireFTP interprets –r as a part of a file attribute and no longer fails. It doesn’t actually display
the file since its attribute list is not complete but the empty directory that it displays
adequately shows that the µFileSystem is empty.

3. When re-connecting to an FTP server which was previously being displayed, it is useful to
refresh the display by clicking on the blue circled arrow near to the FTP server contents
display. The reason is that sometimes there is no listing performed when a new connection is
established and the display may not necessarily be up to date.

Typical FTP view in FireFox (not FireFTP)

www.uTasker.com µTasker – FTP V1.3

uTaskerFTP.doc/0.02 12/12 8.7.2007

Password entry pop-up when using FireFox (not FireFTP)

Note that the FireFox FTP viewer doesn’t close down the FTP connection until it either times
out or FireFox is terminated. Therefore it can ‘hog’ the µTasker FTP server…
FireFox alone is not recommended for general use due to its limited capabilities, together
with the FireFTP add on it is however highly recommended!

Conclusion

The µTasker FTP server implementation has been described along with some background of
FTP operation. The configuration of user authentication and passive/active FTP options have
been shown to be important also to the operation of typical FTP clients.

The use of DOS FTP, Internet Explorer and FireFox/FireFTP were then introduced including
tips for best operation with the µTasker FTP server as well as strengths and weaknesses of
the various solutions.

The µTasker FTP implementation is of small footprint size to operate together with the
µFileSystem in an autonomous manor [eg. approx. 2,5k program size on an ARM processor
in Thumb mode with all FTP options activated]. Projects can benefit from the comfort of
transferring files for use by the web server or various other storage requirements of an
application using user friendly FTP clients, either in a local area network or via the Internet.
This capability avoids for example the necessity to compile pages to be served by the web
server into a project, which allows simple modification to be made by developers or even end
users.

Document state:

- 7.7.2007 Initial version for the V1.3 project
- 8.7.2007 Typos clean-up

