

uTaskerFTP_client.doc/1.01 Copyright © 2012 M.J.Butcher Consulting

Embedding it better...

µTasker Document

FTP Client

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 2/19 03.06.2012

Table of Contents
1. Introduction ...3

2. FTP Log-In..4

3. FTP Operation Modes ...4

4. µTasker Project FTP Client Interface ...5

4.1. Simple TCP Socket Data Mode ...5

4.2. Buffered TCP Socket Data Mode ...6

4.3. User Supplied TCP Socket Data Mode ...6

5. Connecting to an FTP Server ...8

6. Moving between Directories and Listing Content on the FTP Server 10

7. Creating a New Directory .. 13

8. Retrieving Data from the FTP Server ... 14

9. Sending or Appending Data to Files at the FTP Server .. 15

10. Renaming Files and Directories ... 17

11. Deleting Files and Directories .. 18

12. Conclusion ... 19

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 3/19 03.06.2012

1. Introduction

The µTasker FTP Client is an interface that allows applications to command a TCP
connection to an FTP server. Once connected to the server, involving a login procedure that
the FTP client interface takes over, the application can control data transfers with the server
via a second TCP data connection that is also managed by the FTP client.

Examples of the use of the TCP client interface:

• The application checks the content of a directory on an FTP server to see whether
there are new or updated files available.

• The application retrieves files from an FTP server to store locally (including firmware
update content) or to pass on to another interface (such as a serial interface).

• The application copies local data to a FTP, where it is stored as a file for later retrieval
by the same application or another user.

• The application establishes a data connection and uses the FTP server as remote
data logging storage space (in the form of a file which is either created or appended
to).

The FTP client therefore needs to offer a convenient interface to the application and perform
details of the FTP operation in a transparent manner so that the application can concentrate
on making use of the FTP capabilities to simply achieve the advantages offered by it.

FTP operation involves the use or two TCP ports and two TCP connections when data is
transferred. The first TCP connection is usually on the well-known port 21 and is known as
the FTP command connection. This connection is used to log on to the FTP server and to
exchange parameters as well as to command actions that subsequently require a second
data connection for the data transfer. The data connection is established when data is to be
transferred between the client and the server and is open only as long as the transfer takes
place. A new data connection is established for each individual data transfer.

The µTasker FTP client can be used over IPv4 and IPv6 when the IPv6 stack is enabled.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 4/19 03.06.2012

2. FTP Log-In

FTP servers are protected by a user login sequence consisting of a user name and a
matching password. When the access is intended for anyone the FTP server will accept an
anonymous login, whereby it is usual for the anonymous user to login with an email address.
The use of an email address is however not usually a requirement and any password is
normally accepted as long as the anonymous user name has been correctly entered.
Anonymous users may have restricted access to the data on the FTP server (for example
they may be able to read data but not write, modify or delete it).

The µTasker FTP client supports plain-text and anonymous login. It doesn’t support security
such as TLS or SSL.

3. FTP Operation Modes

There are two main operation modes concerning data connection. These are active and
passive connection modes. The server may not support both modes and will inform the FTP
client correspondingly in case it can’t work in any requested mode.

• Active data connection mode involves the FTP server establishing the data
connection when data transfer is to take place.

• Passive data connection mode involves the FTP client establishing the data
connection when data transfer is to take place.

The data transfer content can also be of two types: binary or ASCII. Binary mode of
operation allows 8 bit bytes to be sent and received. ASCII mode allows only 7 bit characters
to be sent and received.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 5/19 03.06.2012

4. µTasker Project FTP Client Interface

Since FTP client use can vary between applications the µTasker project uses a practical user
interface to work with a remote FTP server. This interface allows logging on to the server,
viewing directories and files, moving around the directory structure, as well as renaming and
deleting files and directories.

Files can be retrieved and their content is displayed at the terminal interface and the user
can also create files and write, or append to them, using the terminal interface input.

Usually this interface can be used in general projects and the user will then only need to
decide what should be done with retrieved data (for example save it to a file or pass it on to a
different interface) and where data to be saved comes from (example from another input of
from a local file).

The data socket used during data transfer can be of three different types. Two of these are
integrated in the TCP client itself and the other one is supplied by the user. The three types
are explained in more detail below and it is up to the user of the FTP client to decide which
type of operation is most suitable for the project in which it is used. The mode used is defines
on a project basis.

4.1. Simple TCP Socket Data Mode

The data socket is managed by the FTP client. It is a simple TCP socket offering the lowest
memory utilisation but supports only single frame transfer (no TCP windowing), which
doesn’t allow highest throughput. In projects where the transfer rate is not of priority but
rather simple operation with lowest memory footprint is preferred this type of socket can be
used.

The socket type only affects data transmission (PUT or APPEND) whereby the user receives
initially a call-back event FTP_CLIENT_EVENT_DATA_CONNECTED when the data

connection has been established. This is followed by either
FTP_CLIENT_EVENT_PUT_CAN_START or FTP_CLIENT_EVENT_APPEND_CAN_START to

inform the user that one frame of data can be sent using the fnSendTCP() command,

whereby the data socket’s socket number was passed in the call-back message box along
with the IP address of the FTP server.

When this frame has been successfully transmitted and acknowledged by the FTP server the
user receives the call-back event FTP_CLIENT_EVENT_DATA_SENT and can send a further

TCP frame using fnSendTCP() if more data is ready to be transmitted. This can continue

until the user doesn’t want to send any more data, in which case the user returns
APP_REQUEST_CLOSE if the user hasn’t already commanded a close of the data socket.

In this mode of operation it is up to the user to resend any data that cannot be delivered to
the FTP server. In case of data loss the user receives the call-back event
FTP_CLIENT_EVENT_DATA_LOST and must repeat the previous data (or that data plus

additional data that is waiting).

When the data connection is closed the call-back event
FTP_CLIENT_EVENT_DATA_DISCONNECTED is received.

The mode of operation is used when no extra options are defined.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 6/19 03.06.2012

4.2. Buffered TCP Socket Data Mode

The data socket is managed by the FTP client. It uses a buffered TCP socket and manages
TCP windowing for fastest data throughput as well as repetitions in case of lost data. This
mode is simplest to use but requires a TCP buffer size of
FTP_CLIENT_TCP_BUFFER_LENGTH for its operation, whereby the user must ensure that

this buffer is not overrun – by monitoring it with fnSendBufTCP() and the flag

TCP_BUF_CHECK before sending data with fnSendBufTCP() rather than with

fnSendTCP().

The user call-back events to be handled during file transmission are
FTP_CLIENT_EVENT_DATA_CONNECTED and FTP_CLIENT_EVENT_DATA_SENT,

whereby this event is only received when all outstanding data has been acknowledged, thus
allowing the user to return APP_REQUEST_CLOSE to close a connection when all data has

been sent. Optimal data transmission and repetitions in case of data loss are handled by the
FTP client’s listener function.

This mode of operation is enabled by the define FTP_CLIENT_BUFFERED_SOCKET_MODE.

4.3. User Supplied TCP Socket Data Mode

The FTP client doesn’t manage a data socket. In this case the FTP client informs the user
that a data connection is required via call-back events
FTP_CLIENT_EVENT_ACTIVE_LISTEN_DATA or

FTP_CLIENT_EVENT_PASSIVE_CONNECT_DATA and it is the responsibility of the user to

supply this socket. It either puts the socket to the listening mode on the port supplied in the
call-back message box or else it actively establishes a TCP connection to the port on the
FTP server with IP and port number supplied in the call-back message box.

An example of handling this is shown below, illustrating how the user’s code handles the
data connection and also retrieves details of the exact action taking place.

if (ptrClientMessageBox->iCallbackEvent & (FTP_CLIENT_EVENT_ACTIVE_LISTEN_DATA |

 FTP_CLIENT_EVENT_PASSIVE_CONNECT_DATA)) { // data connection request

 FTP_Client_Control_socket = ptrClientMessageBox->uControlSocket;

 // the socket used by the FTP client for control purposes

 if (ptrClientMessageBox->iCallbackEvent &

 FTP_CLIENT_EVENT_ACTIVE_LISTEN_DATA) { // we must listen on the port

 number passed so that the FTP server can

 establish its data connection with us

 iFTP_mode = FTP_DATA_LISTENER; // the data connection state

 fnListenFTPDataConnection(ptrClientMessageBox->usDataPort);

 // set the socket to listen on the port number

 }

 else { // FTP_CLIENT_EVENT_PASSIVE_CONNECT_DATA - IP address and port number of

 data connection known - we can establish a connection with it

 iFTP_mode = FTP_DATA_CLIENT; // mark that a passive FTP data connection is

 being established

 fnEstablishFTPDataConnection(ptrClientMessageBox->ucIP_data_address,

 ptrClientMessageBox->usDataPort);

 }

 if (ptrClientMessageBox->iCallbackEvent & FTP_CLIENT_EVENT_FLAG_ASCII_MODE) {

 iFTP_mode |= FTP_DATA_ASCII;

 }

 if (ptrClientMessageBox->iCallbackEvent & FTP_CLIENT_EVENT_FLAG_PUT_DIRECTION){

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 7/19 03.06.2012

 iFTP_mode |= FTP_DATA_PUT_MODE; // we are allowed to send but not receive

 }

 else {

 iFTP_mode |= FTP_DATA_GET_MODE; // we are allowed to receive but not send

 }

 if (ptrClientMessageBox->iCallbackEvent & FTP_CLIENT_EVENT_FLAG_LISTING) {

 iFTP_mode |= FTP_DATA_LISTING; // not file content

 }

 else if (temp_pars->temp_parameters.ucFTPmode & _FTP_GET_ESCAPING) {

 // set present escape sequencing flags when getting data (not listing)

 iFTP_mode |= FTP_DATA_ESCAPE_SEQUENCING_GET;

 }

 if (temp_pars->temp_parameters.ucFTPmode & _FTP_PUT_ESCAPING) {

 iFTP_mode |= FTP_DATA_ESCAPE_SEQUENCING_PUT;

 }

 return 0;

}

The details of the TCP socket actually used are application specific, as is how the
connections are established.

This type of socket is useful in applications which can share an existing socket for the data
transfer which may be used for other purposes when the FTP client is not in use. The user
socket has to handle the data but has full control over this operation. When data
transmission to the FTP server has completed the user closes this data socket to terminate
the PUT/APPEND transaction.

This mode of operation is enabled by the define FTP_CLIENT_EXTERN_DATA_SOCKET.

Note that the IP address used on the
FTP_CLIENT_EVENT_PASSIVE_CONNECT_DATA call-back event is only valid when
the connection is an IPv4 connection. When the connection is over IPv6 this value is
not valid and the data connection should be made to the entry

ptrClientMessageBox->ptrIPv6Address, which will be valid when the
connection is over IPv6 but will be a zero pointer when the connection is over IPv4.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 8/19 03.06.2012

5. Connecting to an FTP Server

The connection to a remote FTP server is controlled by the FTP client module. The user
starts the connection process – including logging on to the server – by calling the function

extern USOCKET fnFTP_client_connect(

 unsigned char *ptr_ucIP_address,

 unsigned short ucPortNumber,

 unsigned short usFTPTimeout,

 int (*user_callback)(TCP_CLIENT_MESSAGE_BOX *),

 int iFlags);

The IP address of the server (IPv4 or IPv6), the TCP port number to be used for the session,
the connection timeout, a user call-back routine and optional flags are passed to the routine.
When an IPv4 address is used the flags are set to FTP_CLIENT_IPv4 and when an IPv6
address is used the flags are set to FTP_CLIENT_IPv6.

The function returns the socket number of the FTP client’s control socket if the process can
start or an error if no connection attempt can be made.

During the login process the user call-back function is used when the FTP client needs to
know the user name and user password that is required by the server. The call-back function
must therefore return pointers to when requested for this information as show by the example
below.

extern int fnFTP_client_user_callback_handler(

 TCP_CLIENT_MESSAGE_BOX *ptrClientMessageBox)

{

 switch (ptrClientMessageBox->iCallbackEvent) { // FTP client events

 case FTP_CLIENT_EVENT_LOGGED_IN: // FTP connection now established

 fnDebugMsg("FTP connection established\r\n");

 break;

 case FTP_CLIENT_EVENT_REQUEST_FTP_USER_NAME: // return pointer to user name

 ptrClientMessageBox->ptrData =

 (unsigned char *)temp_pars->temp_parameters.cFTPUserName;

 break;

 case FTP_CLIENT_EVENT_REQUEST_FTP_USER_PASSWORD: // return pointer to password

 ptrClientMessageBox->ptrData =

 (unsigned char *)temp_pars->temp_parameters.cFTPUserPass;

 break;

 case FTP_CLIENT_USER_NAME_ERROR:

 fnDebugMsg("FTP User failed\r\n");

 break;

 case FTP_CLIENT_USER_PASS_ERROR:

 fnDebugMsg("FTP Pass failed\r\n");

 break;

 case FTP_CLIENT_EVENT_LOGGED_FAILED: // login was

 fnDebugMsg("FTP-bad_login\r\n");

 break;

 case FTP_CLIENT_EVENT_CONNECTION_CLOSED: // connection closed or aborted

 fnDebugMsg("FTP connection terminated\r\n");

 break;

 }

}

Note that returning a zero pointer, or empty string, in response to the user name request will
cause the FTP client to attempts anonymous login.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 9/19 03.06.2012

Using the command line interface (serial, Telnet or USB) a connection can be made to the
remote FTP server by entering

ftp_con

When the connection is successful the message

FTP connection established

is seen. The connection will timeout after a period of non-use, or can be terminated by
entering

ftp_dis

In each case the termination is seen by

FTP connection terminated

In case of login errors corresponding error messages are displays, such as

FTP-bad_login

The command used to disconnect the FTP session is

extern int fnFTP_client_disconnect(void);

This function returns a positive value equivalent to the length of data send by the socket to
command the termination or SOCKET_STATE_INVALID when there is no session to

terminate.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 10/19 03.06.2012

6. Moving between Directories and Listing Content on the FTP Server

The function used for all directory type command is

extern int fnFTP_client_dir(CHAR *ptrPath, int iAction);

To perform a directory listing the command

fnFTP_client_dir(0, FTP_DIR_LIST);

is executed. This causes a listing to be started from the present location on the FTP server.
After a log-on, this location will be the user’s root directory on the FTP server.

To start a directory listing at a different location a path string can be passed, such as

fnFTP_client_dir("dir1/dir2", FTP_DIR_LIST);

The maximum length for path names is configured by the define
MAX_FTP_CLIENT_PATH_LENGTH, for example

#define MAX_FTP_CLIENT_PATH_LENGTH 64

The FTP client module will then negotiate the listing with the FTP server and set the transfer
mode to ASCII (when this is not already known to be the case). The call-back is used to
request the application whether the data connection should be performed in active or passive
mode and then the data connection will also be opened accordingly.

Once the data connection has been established the FTP server sends the directory content
listing which is received on a TCP frame base via the call-back function. The µTasker project
sends this to the command line interface so that the user can view it.

The call-back function case entries responsible for this are shown below:

...

 case FTP_CLIENT_EVENT_ACTIVE_PASSIVE_LIST: // the FTP client is asking whether

 we want to transfer data in active or

 passive mode

 return (!(temp_pars->temp_parameters.usServers & PASSIVE_MODE_FTP_CLIENT));

 // return the FTP mode setting

 case FTP_CLIENT_EVENT_LISTING_DATA: // receiving listing data

 fnWrite(DebugHandle, ptrClientMessageBox->ptrData,

 ptrClientMessageBox->usDataLength); // write to debug output

 break;

 case FTP_CLIENT_EVENT_LISTING_DATA_COMPLETE: // listing terminated and the data

 connection was terminated by the FTP server

 fnDebugMsg("FTP directory listing complete\r\n");

 break;

 case FTP_CLIENT_EVENT_DATA_CONNECTION_FAILED: // data connection failed

 fnDebugMsg("Data connection failed\r\n");

 break;

...

In this example the received data is simply sent to the debug output. Usually some flow
control will be used in addition in case the debug output cannot handle amount of data
without buffer overrun. See the µTasker project code for the complete solution.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 11/19 03.06.2012

A directory listing performed using the command line menu is shown below:

ftp_dir

#drwxr-x--- 2 0 33 4096 Jun 19 2007 atd

drwxr-x--- 2 0 757 4096 Dec 09 21:05 backup

drwxr-x--- 2 757 33 4096 Nov 20 2007 files

drwxr-x--- 19 757 33 4096 Dec 08 16:37 html

drwxr-x--- 3 0 757 4096 Dec 13 01:07 log

drwxrwx--- 2 757 33 4096 Dec 13 21:11 phptmp

drwxrwx--- 2 0 757 4096 Jun 19 2007 restore

FTP directory listing complete

#ftp_dir html/dir_test

#-rw-r--r-- 1 757 757 17575 Dec 13 09:25 1.txt

-rw-r--r-- 1 757 757 60 Dec 08 15:26 2.txt

drwxr-xr-x 2 757 757 4096 Dec 13 09:53 test

-rw-r--r-- 1 757 757 10 Dec 10 00:31 test10.txt

-rw-r--r-- 1 757 757 6090 Dec 12 21:25 test3.txt

-rw-r--r-- 1 757 757 33991 Dec 12 21:36 test5.txt

-rw-r--r-- 1 757 757 34055 Dec 12 21:54 test6.txt

-rw-r--r-- 1 757 757 26 Dec 08 19:13 test7.bin

-rw-r--r-- 1 757 757 25 Dec 08 19:12 test8.txt

-rw-r--r-- 1 757 757 15 Dec 08 19:12 test9.bin

-rw-r--r-- 1 757 757 786 Dec 11 22:21 testp2.txt

-rw-r--r-- 1 757 757 1179 Dec 11 22:42 testp3.txt

-rw-r--r-- 1 757 757 2629 Dec 11 22:51 testp4.txt

-rw-r--r-- 1 757 757 20835 Dec 11 22:40 testput.txt

FTP directory listing complete

When work will be performed in a directory other than the user’s root directory on the remote
FTP server it is often convenient to move to that location rather than working with relative
path strings. The following shows moving to the new location via the command line interface:

ftp_path html/test_dir

#New path set

This is commanded at the FTP client interface using

fnFTP_client_dir("dir1/dir2", FTP_DIR_SET_PATH);

Unlike the directory listing command the FTP client doesn’t need to open a data connection
but instead can negotiate the operation entirely using the existing FTP command connection.

If the new path could not be set or some other error occurs the FTP client notifies the user
via error events. The command line interface displays the error number and also the error
text that the FTP server sent so that the reason for the operation failure is clear. For
example:

ftp_path bad_dir

#FTP ERROR:[0204] 550 Failed to change directory.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 12/19 03.06.2012

The call-back interface code responsible for the error output and the event handling cases
used by the path command are shown below.

...

 case FTP_CLIENT_EVENT_LOCATION_SET: // requested path successfully set

 fnDebugMsg("New path set\r\n");

 break;

...

 if (ptrClientMessageBox->iCallbackEvent & FTP_CLIENT_ERROR_FLAG) {

 // error event code

 fnDebugMsg("FTP ERROR:[");

 fnDebugHex(ptrClientMessageBox->iCallbackEvent, 2);

 fnDebugMsg("] ");

 fnWrite(DebugHandle, ptrClientMessageBox->ptrData,

 ptrClientMessageBox->usDataLength);

 // display exact error sent by FTP server as text

 return 0;

 }

Note that the general error handling is recognised by the error flag in the state value and is
positioned before the other event handling.

Note that the event FTP_CLIENT_EVENT_LISTING_DATA_COMPLETE is sent only when the
server has reported successful data transfer and also the data connection has been
closed by the server. The reason for this is that the ordering of these two events is not
defined and so the user should not stop receiving the data until both events have
taken place. This is however not the case when the user handles the data connection
using an external TCP socket (FTP_CLIENT_EXTERN_DATA_SOCKET) in which
case the user has to ensure that the data sockets state is also monitored as the event
FTP_CLIENT_EVENT_LISTING_DATA_COMPLETE indicates only that the server has reported
success.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 13/19 03.06.2012

7. Creating a New Directory

Sometimes it may be desirable to create a new directory at the FTP server where new files
will be stored.

The FTP client interface command to create a new empty directory at the FTP server is

fnFTP_client_dir(“DIRECTORY_NAME”, (FTP_DIR_MAKE_DIR));

The directory name string can also be a path with new directory name.

If the directory creation si successful the call-back event
FTP_CLIENT_EVENT_DIR_CREATED is received.

The command line input is

ftp_mkdir test_dir

New directories can only be created when the user has the necessary rights at the FTP
server to do this.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 14/19 03.06.2012

8. Retrieving Data from the FTP Server

The FTP GET command is used by the FTP control connection to start the file content
retrieval process. Transfers of content can be performed in ASCII or binary mode. ASCII
mode is only suitable for files that contain 7-bit ASCII content.

The FTP client interface command to perform a GET of a file from the FTP server is

fnFTP_client_transfer(“FILE_NAME”,

 (FTP_DO_GET | FTP_TRANSFER_BINARY));

or

fnFTP_client_transfer(“FILE_NAME”,

 (FTP_DO_GET | FTP_TRANSFER_ASCII));

If the binary/ascii mode option is not set binary is the default used.

The file name string can also be a path with file name.

The command line input is

ftp_get test_dir/file1.bin

or

ftp_get_a test_dir/file2.txt

The first starts the retrieval of a file in binary mode and the second in ascii mode. The path is
optional in case the file is not located at the present directory location on the remote FTP
server.

Once the GET command has been executed the FTP data connection is established (either
in active or passive mode). Following the successful connection the FTP server starts
sending the file’s content and this is received via the data connection’s TCP socket.

Each received TCP frame content is passed to the user via the call-back and event
FTP_CLIENT_EVENT_GET_DATA along with a pointer to the received data and its length.

As in the case of the directory listing, the µTasker reference project sends all received file
content to the debug output so that file content listings can be made. To aid in controlling the
reception of large file content the µTasker reference project allows the scrolling to be paused
by hitting the ‘p’ key – this will halt reception from the FTP server by pausing the debug
output. Hitting the ‘p’ key a second time will allow the reception to continue. If it is required to
stop the reception of a large file before it has completed the CTRL + C sequence can be
used to abort the transfer, thus closing the FTP data connection, but retaining the FTP
control connection.

The data connection is terminated by the FTP server once it has sent the complete content
and this event represents that the file has been completely received.

One successful termination the call-back event
FTP_CLIENT_EVENT_GET_DATA_COMPLETE is received.

Note that the event is sent only when the server has reported successful data transfer
and also the data connection has been closed by the server. The reason for this is
that the ordering of these two events is not defined and so the user should not stop
receiving the data until both events have taken place. This is however not the case

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 15/19 03.06.2012

when the user handles the data connection using an external TCP socket
(FTP_CLIENT_EXTERN_DATA_SOCKET) in which case the user has to ensure that
the data sockets state is also monitored as the event
FTP_CLIENT_EVENT_GET_DATA_COMPLETE indicates only that the server has

reported success.

9. Sending or Appending Data to Files at the FTP Server

The FTP put command is the inverse of the GET command, whereby data is sent to the FTP
server and stored to the file that is created. The file transfer can take place in ascii or binary
mode.

The APPEND command is very similar to the PUT command but, instead of creating a new
file, or first deleting an existing file, it opens an existing file and appends new data to it.

The FTP client interface command to perform a PUT to a file on the FTP server is

fnFTP_client_transfer(“FILE_NAME”,

 (FTP_DO_PUT | FTP_TRANSFER_BINARY));

or

fnFTP_client_transfer(“FILE_NAME”,

 (FTP_DO_PUT | FTP_TRANSFER_ASCII));

If the binary/ascii mode option is not set binary is the default used.

The file name string can also be a path with file name.

The command line input is

ftp_put test_dir/file1.bin

or

ftp_put_a test_dir/file2.txt

The first starts by creating the file at the FTP server for subsequent data transfer to it in
binary mode and the second in ascii mode. The path is optional in case the file is not located
at the present directory location on the remote FTP server.

The FTP client interface command to perform an APPEND to a file on the FTP server is

fnFTP_client_transfer(“FILE_NAME”,

 (FTP_DO_APPEND | FTP_TRANSFER_BINARY));

or

fnFTP_client_transfer(“FILE_NAME”,

 (FTP_DO_APPEND | FTP_TRANSFER_ASCII));

If the binary/ascii mode option is not set binary is the default used.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 16/19 03.06.2012

The file name string can also be a path with file name.

The command line input is

ftp_app test_dir/file1.bin

or

ftp_app_a test_dir/file2.txt

The first starts by opening the file at the FTP server for subsequent data append to it in
binary mode and the second in ascii mode. The path is optional in case the file is not located
at the present directory location on the remote FTP server.

Once the PUT or APPEND command has been executed the FTP data connection is
established (either in active or passive mode). Following the successful connection file data
content can be sent to the FTP server.

The µTasker reference project sends all debug input data to the file at the FTP server. This
means that all key entry will be written to the file. Since the FTP server doesn’t know when
the file has completed it is necessary for the FTP client to close the data connection at the
end of the session. The end of the session can be commanded by CTRL + C .

Files can only be created and written to when the user has the necessary rights at the FTP
server to do this.

Data is sent to the FTP server using the data socket type as specified in the FTP client
project configuration (see the chapter on the FTP client configuration for details of the
possible types). The µTasker project supports both modes based on an integrated data
socket in the FTP client to aid in deciding which best suits the user (with and without
FTP_CLIENT_BUFFERED_SOCKET_MODE enabled). The mode based on a shared data

socket supplied by the user is not included in the µTasker project but a reference interface is
shown in the chapter discussing this mode.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 17/19 03.06.2012

10. Renaming Files and Directories

The FTP client interface command to rename a file or a directory at the FTP server is

fnFTP_client_dir(“NAME1 NAME2”, (FTP_DIR_RENAME));

The name string, containing both the original name and the new name – separated by a
space, can also be paths to the file or directory.

If the rename is successful the call-back event FTP_CLIENT_EVENT_RENAMED is received.

The command line input is

ftp_ren file1.txt file2.txt

Files and directories can only be renamed at the FTP server if the user has permission to do
this.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 18/19 03.06.2012

11. Deleting Files and Directories

The FTP client interface command to delete a file at the FTP server is

fnFTP_client_dir(“FILE_NAME”, (FTP_DIR_DELETE));

The file name string can also be a path to the file.

The command line input is

ftp_del file1.txt

The FTP client interface command to delete an empty directory at the FTP server is

fnFTP_client_dir(“DIRECTORY_NAME”, (FTP_DIR_REMOVE_DIR));

The directory name string can also be a path to the directory.

If the directory removal was successful the call-back event
FTP_CLIENT_EVENT_DIR_DELETED is received.

The command line input is

ftp_remove test_dir

TFP servers will generally not allow a directory to be deleted if it still contains files.

Files and directories can only be deleted from the FTP server if the user has permission to
do this.

www.uTasker.com µTasker – FTP Client

uTaskerFTP_client.doc/1.01 19/19 03.06.2012

12. Conclusion

The µTasker FTP client allows simple user interaction with a remote FTP server as
demonstrated by the µTasker reference project. The interface gives applications powerful
methods to create directories and files at a remote FTP server to save data collected locally
into and also to retrieve files, for example to obtain new configuration data or new firmware.

The data connection interface is flexible, allowing a simple integrated socket method for the
simplest solution with least memory overhead, an integrated buffered TCP socket for fastest
throughput and simplest user interface or a user-supplied data socket, which may be shared
with other applications uses to optimise TCP socket resources.

Modifications:
V0.00 14.12.2011: Initial draft

V0.01 20.12.2011: Command set completed

V0.02 23.12.2011: First complete version

V1.00 24.12.2011: First release

V1.01 03.06.2012: Add new operation where the ASCII/BINARY types are only sent when
the server’s mode is not already known to be set to that type. Also add note that that listing
and getting is now only reported as being successful when the server responds with
successful completion and also the data connection has closed (when not using
FTP_CLIENT_EXTERN_DATA_SOCKET). FTP client supports also operation over IPv6.

