

uTaskerFileSystem_Revision1.doc/0.00 Copyright © 2011 M.J.Butcher Consulting

Embedding it better...

µTasker Document

µFileSystem – Revision 1

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 2/10 07.10.2011

Table of Contents
1. Introduction ...3

2. Examples of what should be possible ...3

3. Demonstration Project ...4

4. Memory Mapping ..5

5. Modifications ..7

6. Example ..8

7. Conclusion .. 10

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 3/10 07.10.2011

1. Introduction

This document details a revision made to the way that the uFileSystem (and low level
accesses) work with storage medium that can be of varying device type and/or have multiple
devices.

The background to the revision is that the storage types covered have grown (eg. internal
Flash, external SPI Flash, external I2C EEPROM etc.) and in some cases there are multiple
devices of the same type that need to be controlled. With increasing device types the code
has grown to be less understandable and with multiple devices there have been some
problems with writing and reading over device boundaries that needed to be solved for each
individual case.

The revision attempts to improve the code to be more structured in order to handle the
various situations in a more generic manner and also to add new devices without its
complexity each time increasing again.

The revised operation is enabled by the define STORAGE_REV_1. Although it is advised to

work with the new strategy the user can disable it by disabling this define in config.h in

case of any problems encountered. Once the revised operation has been fully verified the
method will be used exclusively.

2. Examples of what should be possible

1) When reading a block of data to a buffer the starting memory location can be in any
storage medium. The read length can extend over multiple devices, requiring the read to be
correctly managed over multiple devices of the same or differing types.

2) When writing a block of data from a buffer the starting memory location can be in any
storage medium. The write length can extend over multiple devices, requiring the write to be
correctly managed over multiple devices of the same or differing types.

3) When erasing a part of memory the initial section can be in any storage medium. The
erase length can extend over multiple devices, requiring the erase to be correctly managed
over multiple devices of the same or differing types.

In each case the user doesn't necessarily need to know in what type of storage medium the
destination area is in to be able to perform the operations.

A further advantage of the revised technique is that the user can add or remove memory
areas from the system at run-time, allowing the memory dimensions to be adjusted
depending on what devices are physically available.

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 4/10 07.10.2011

3. Demonstration Project

The uTasker demonstration project includes (among others, and depending on the project
status) support of internal flash, external SPI based flash, external I2C based EEPROM and
external parallel flash. The uFileSystem is linear, beginning in internal flash (if used) and
extending into other media types.

The project demonstrates SPI Flash use (a single device or multiple devices of the same
type) as an extension to the file system or as a replacement to the use of internal Flash. This
is enabled by the define SPI_FILE_SYSTEM and the corresponding dimensioning of the

µFileSystem and µParameterSystem. The demonstration project assumes that the declared
number of SPI Flash devices are always present and the file granularity used by internal and
external Flash should be the same.

The project demonstrates I2C EEPROM use (a single device or multiple devices of the same
type) as an extension to the file system or as a replacement to the use of internal Flash. This
is enabled by the define I2C_EEPROM_FILE_SYSTEM and the corresponding dimensioning

of the µFileSystem and µParameterSystem. The demonstration project allows the number of
devices attached to be determined at run time and so the size of the file system changes
accordingly. The file granularity used by internal Flash and external EEPROM should be the
same.

The project demonstrates external parallel Flash use (a single device or multiple devices of
the same type) as an extension to the file system or as a replacement to the use of internal
Flash. This is enabled by the define EXT_FLASH_FILE_SYSTEM and the corresponding

dimensioning of the µFileSystem and µParameterSystem. The demonstration project
assumes that the declared number of external parallel Flash devices are always present and
the file granularity used by internal and external Flash should be the same.

Although the demonstration project doesn’t show the use of a mixture of the storage media
the revision 1 project adaptation would allow this to be configured with little extra effort.

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 5/10 07.10.2011

4. Memory Mapping

4k

4k

4k

4k

4k

4k

4k

4k

Block 0
0x00000000

0x00001000

0x00002000

0x00003000

0x00004000

0x00005000

0x00006000

0x00007000

0x00008000

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4k

4k

4k

4k

4k

4k

4k

4k

Block 56

Block 57

Block 58

Block 59

Block 60

Block 61

Block 62

Block 63
0x00040000

0x0003f000

0x0003e000

0x0003d000

0x0003c000

0x0003b000

0x0003a000

0x00039000

0x00038000

Internal
Flash
physically
addressed

4k

4k

4k

4k

4k

4k

4k

4k

Block 0
0x00041000

0x00042000

0x00043000

0x00044000

0x00045000

0x00046000

0x00047000

0x00048000

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4k

4k

4k

4k

4k

4k

4k

4k

Block 56

Block 57

Block 58

Block 59

Block 60

Block 61

Block 62

Block 63
0x00080000

0x0007f000

0x0007e000

0x0007d000

0x0007c000

0x0007b000

0x0007a000

0x00079000

0x00078000

SPI based
Flash
virtually
addressed

4k

4k

4k

4k

4k

4k

4k

4k

Block 0
0x00001000

0x00002000

0x00003000

0x00004000

0x00005000

0x00006000

0x00007000

0x00008000

Block 1

Block 2

Block 3

Block 4

Block 5

Block 6

Block 7

4k

4k

4k

4k

4k

4k

4k

4k

Block 56

Block 57

Block 58

Block 59

Block 60

Block 61

Block 62

Block 63
0x000c0000

0x000bf000

0x000be000

0x000bd000

0x000bc000

0x000bb000

0x000ba000

0x000b9000

0x000b8000

External
parallel
Flash
physically
mapped
but virtually
addressed

File system

Program
code

0x00000000

0x0003c000

0x00040000

0x20000000

0x20040000

File
System
Address
Range

0x0003c000

0x000c0000

Figure 1 – File System Memory Mapping

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 6/10 07.10.2011

Figure 1 shows how the file system memory mapping operates. It is based on the fact that
the user sees the file system as a contiguous block of memory in the memory space. All
memory access using the file system methods also accesses the data according to this
strategy.

The example shows three types of memory being used: internal Flash, external SPI Flash
and external parallel Flash. In each case the three memory types have the same physical
size (for simplicity) but each show different characteristics:

- The internal Flash is directly memory mapped. The file system uses a part of the
available area, starting at the physical address location of the part of the Flash that is
used by the file system.

- The external SPI Flash is mapped virtually into the otherwise free physical memory
space following the internal Flash. Since the SPI Flash (or multiple devices) doesn’t
actually have a memory mapped location the interface performs the mapping
function.

- The external parallel Flash memory does have a physical location in the system’s
memory map but this is not suitable (in this case) for use as a member of the
contiguous file system space and so it is virtually addressed (mapped between its
physical location and its file system location).

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 7/10 07.10.2011

5. Modifications

There are primarily three routines that are affected by the revision:

extern void fnGetParsFile(unsigned char *ParLocation, unsigned char

*ptrValue, MAX_FILE_LENGTH Size);

extern int fnWriteBytesFlash(unsigned char *ucDestination, unsigned

char *ucData, MAX_FILE_LENGTH Length);

extern int fnEraseFlashSector(unsigned char *ptrSector,

MAX_FILE_LENGTH Length):

These routines are a part of the hardware file belonging to each processor. The use of the
routines by user code and/or uFileSystem code don't need any modification itself.

Originally the routines checked for the area of memory that each access is for and used the
appropriate hardware details to read, write or delete the content. With an increasing number
of storage media this code had become difficult to maintain. These routines now serve more
as cover functions to the hardware related details by first calling a new local function called
fnGetStorageType() which performs the decision as to which of the storage areas the

access starts in. In addition it determines in which device in the storage area the access is to
when multiple devices exist (eg. there may be 4 SPI Flash devices used to create an SPI
Flash storage area). Finally it limits the length of the access to within the range of a single
device. If the function (read, write or erase) is to be performed in multiple storage types or in
multiple devices the cover functions include a loop which handles this in a generic manner.

The result is that it is simple to add different hardware level handling to the driver without
needing to fundamentally modify the cover function’s details and the new hardware details
can then be cleanly added in their own sub-routines, aiding readability and maintenance.

A new detail is that the fnGetStorageType() operation is not based on fixed storage

media locations but on a list of storage location tables, where each storage type has its own
entry. The details list initially contains typically only internal Flash and the list can be adapted
dynamically (when needed) to enable run-time decisions to take place and the storage space
to be suitably adapted.

The internal flash is initially the only table entry:

STORAGE_AREA_ENTRY *UserStorageListPtr = (STORAGE_AREA_ENTRY *)&internal_flash;

static const STORAGE_DAREA_ENTRY default_flash = {

 0, // end of list

 (unsigned char *)(FLASH_START_ADDRESS) // start address of internal flash

 (unsigned char *)(FLASH_START_ADDRESS + SIZE_OF_FLASH), // end of internal

 flash

 _STORAGE_INTERNAL_FLASH, // type

 0 // not multiple devices

 };

Code 1

Drivers automatically insert their own table entry into the list by changing
UserStorageListPtr to point to their entry and then setting their next entry pointer to the

original flash entry.

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 8/10 07.10.2011

typedef struct stSTORAGE_AREA_ENTRY{

void *ptrNext; // pointer to the next storage type available, or

 zero at end of list

unsigned char *ptrMemoryStart; // pointer to the first address in the storage

 area

unsigned char *ptrMemoryEnd; // pointer to last location at the end of the

 storage area (total area when multiple devices)

unsigned char ucStorageType; // the storage type, such as internal Flash, SPI

 Flash etc.

unsigned char ucDeviceCount; // the number of individual devices the storage

 area is made up of (it is assumed that all

 devices are the same type and size)

} STORAGE_DEVICE_ENTRY;

Code 2

In the case of storage areas made up of multiple devices it is to be noted that the
ptrMemoryStart and ptrMemoryEnd pointers refer to the complete storage area range.

The ucDeviceCount is set to the number of devices making up the area. This means that

only one storage area entry is needed for all these devices.

It is to be noted that the reason why the address of last byte is used, and not following
address, is to allow the storage area to end at the last possible address in 32 bit memory
space; otherwise there would be an overflow to zero.

6. Example

The following is an example of configuring external parallel flash memory to operate as
extension to internal flash.

The internal flash is 512k bytes in size and starts at the address 0x00000000. The final

128k of the space is to be used by the uFileSystem.

The external parallel flash area is 2Meg bytes in size and is memory mapped to the physical
address 0xffe00000. It is made up of two chips of each 1 Meg bytes in size.

The configuration of the two storage areas may be fully automated in the processor file but it
could also be added in new cases by users, whereby only access to the internal flash’s
default configuration block is required as follows:

STORAGE_AREA_ENTRY *UserStorageListPtr = (STORAGE_AREA_ENTRY *)&default_flash;

 // default entry

Code 3

UserStorageListPtr is available globally and will be initialised as show in code 1.

The external parallel flash will usually be connected to an external memory interface allowing
fast access and control of its location in memory (chip select control). Since there are two
physical chips involved in the example the interface will be configured so that the first chip

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 9/10 07.10.2011

select will be asserted when accesses are made to the range 0xffe00000..0xffefffff

and the second when the access in the range 0xfff00000..0xffffffff.

The storage area for this medium is then inserted into the storage media list as follows:

static const STORAGE_AREA_ENTRY external_flash = {

 (void *)&default_flash, // inserted before the internal flash

 (unsigned char *)(EXTERNAL_FLASH_START_ADDRESS), // start address of external

 flash

 (unsigned char *)(EXTERNAL_FLASH_START_ADDRESS + (SIZE_OF_EXTERNAL_FLASH - 1)),

 // end of external flash

 _STORAGE_PARALLEL_FLASH, // type

 EXTERNAL_FLASH_DEVICE_COUNT // number of devices

};

Code 4

The dimensions are set by

#define EXTERNAL_FLASH_START_ADDRESS (0xffe00000)

#define SIZE_OF_EXTERNAL_FLASH_CHIP (1024 * 1024)

#define EXTERNAL_FLASH_DEVICE_COUNT 2

#define SIZE_OF_EXTERNAL_FLASH

 (EXTERNAL_FLASH_DEVICE_COUNT*SIZE_OF_EXTERNAL_FLASH_CHIP)

Code 5

To complete the insertion of the parallel flash into the storage media list the following
operation is performed:

 UserStorageListPtr = (STORAGE_AREA_ENTRY *)&external_flash;

Code 6

This modifies the list starting with the external parallel flash area, followed by the original
internal flash area.

In order to map the external flash’s physical location to be contiguous with the end of the
internal flash the following define is used:

#define EXT_PARALLEL_FLASH_OFFSET

 ((FLASH_START_ADDRESS + SIZE_OF_FLASH) - EXTERNAL_FLASH_START_ADDRESS)

Code 7

This define is used by the external flash driver to allow it to shift its virtual location to suit the
file system.

www.uTasker.com µTasker – µFileSystem – Revision 1

uTaskerFileSystem_Revision1.doc/0.00 10/10 07.10.2011

The file system area now looks like a block of internal flash from 0x00000000..0x7ffff,

followed immediately by external flash between 0x80000..280000. These addresses are

used when reading, writing or erasing memory using the routines described at the start of
this document.

It is assumed that the file granularity can be chosen to be suitable for the flash granularity of
internal and external flash. The file system itself is declared to start at 0x60000 and be

0x220000 bytes in size; using a large 64k file granularity it looks as follows:

#define SINGLE_FILE_SIZE (64 * 1024) // files are made up of 64k blocks

#define uFILE_START (0x60000) // first file starts here

#define FILE_SYSTEM_SIZE (0x220000) // 2176k reserved for file system

Code 8

This doesn’t include any area for the uParameterSystem but this can also be included either
in internal or external flash memory if required.

The flash drivers for the various storage areas, combined with the control functions used by
the interface routines, allow reads, writes or deletes to be made from any areas in the
storage area space. The user doesn’t need to know what memory is being used and
operations spanning multiple storage media types and multiple individual chips are also
handled transparently.

7. Conclusion

This document has detailed the reasons for the implementation of a revision for the
µFileSystem access methods which ensures that the operation of various storage media,
optionally based on multiple devices, is handled in a generic manner to ensure reliable
operation as well as improved project maintenance.

See also the µFileSystem and µParameterSystem document for details of their operation and
features: http://www.utasker.com/docs/uTasker/uTaskerFileSystem_3.PDF

Modifications:
V0.00 07.10.2011: Initial draft

