
Embedding it better...

µTasker Document

µTasker – RNDIS
(Remote Network Driver Interface Specification)

uTaskerRNDIS.doc/1.00 Copyright © 2016 M.J.Butcher Consulting

www.uTasker.com µTasker – RNDIS

Table of Contents
1.Introduction..3
2.RNDIS USB Class...4
3.RNDIS Messages...5

3.1 Handling a Query
...5
3.2 Handling a Set Message
...5
3.3 Handling an Indicate Status Message from the Device ...6
3.4 Data Message Details
...6

4.Initialisation...7
5.Keep-Alive...12
6.Reset...13
7.Disabling and Re-enabling the RNDIS Network Connection..14
8.Configurations..15
9.Monitoring RNDIS activity...21
10.Installation..22
11.Conclusion...24

uTaskerRNDIS.doc/1.00 2/24 3.10.16

www.uTasker.com µTasker – RNDIS

1. Introduction

The RNDIS protocol is specified in the Microsoft document “Remote Network Driver Interface
Specification (RNDIS) Protocol” [M-RNDIS]. https://msdn.microsoft.com/en-
us/library/ee524902.aspx

For more complete details of individual message see also https://msdn.microsoft.com/en-
us/library/ff570659(v=vs.85).aspx

This discussion concentrates more on technical details to achieve said implementation,
aspects that are possibly not handled (adequately) in the specification and general practical
advice on making use of RNDIS in the µTasker project.

uTaskerRNDIS.doc/1.00 3/24 3.10.16

https://msdn.microsoft.com/en-us/library/ee524902.aspx
https://msdn.microsoft.com/en-us/library/ee524902.aspx
https://msdn.microsoft.com/en-us/library/ff570659(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ff570659(v=vs.85).aspx

www.uTasker.com µTasker – RNDIS

2. RNDIS USB Class

RNDIS is based on the USB-CDC class and uses, as any CDC interface, bulk data (IN and
OUT endpoint) for transport (specifically Ethernet frames packed in the
REMOTE_IDS_PACKET_MSG), plus a control endpoint. The control endpoint is used by the
device to signal that it has a message (not data content) to be collected by the host. Two or
three endpoints are thus required for RNDIS, on top of endpoint 0 (if the data IN and OUT
bulk endpoints are shared on a single endpoint two interface endpoints result).

Endpoint 0 is used extensively by RNDIS for non-data messaging, as explained in the
following chapter.

uTaskerRNDIS.doc/1.00 4/24 3.10.16

www.uTasker.com µTasker – RNDIS

3. RNDIS Messages

RNDIS uses the control endpoint 0 extensively for exchanging messages. With the exception
of the REMOTE_NDIS_PACKET_MSG, which carries data traffic, all other messages are sent
and received on control endpoint 0.

RNDIS messages are based on sets, queries and responses. The message content is based
on OIDs (Object Identifiers), which are details in “Remote NDIS OIDs”
https://msdn.microsoft.com/en-us/library/ff570633.aspx

The documents explain the data exchanges at a fairly high level only and so in order to
understand the way that they actually work requires more investigation and experimentation
to also uncover important details that are otherwise not described in any documents.

The best way to learn the details are to use a USB analyser to monitor the activity of an
existing device that connects using RNDIS or to study some existing implementation code; a
mixture of both together will give the best insight. Most operation can then be matched to the
specification but also requires some 'reading between the lines” and adding unwritten rules
along the way to obtain practical operation.

3.1 Handling a Query

The REMOTE_NDIS_QUERY_MSG is the most fundamental and is used extensively by the
host to obtain information about the device and to monitor its operation.

The sequence involved is called a Send Encapsulated Command which consists of the host
sending a REMOTE_NDIS_QUERY_MSG as a SETUP frame on endpoint 0 requesting a certain
amount of data from the device.

Once the device has processed the request and prepared its response it informs the host via
a Response Available Message on the control endpoint (which is being polled by the host at
the speed defined in its endpoint descriptor).

The host finally requests the response content using a Get Encapsulated Response, again a
SETUP frame on endpoint 0, which collects the device's REMOTE_NDIS_QUERY_COMPETE
response.

3.2 Handling a Set Message

The REMOTE_NDIS_SET_MSG is also encapsulated in a Send Encapsulated
Command and so at a higher level there is no immediate difference between
handling a query and a set message on the USB bus.

The difference is that the OID in the REMOTE_NDIS_SET_MSG also contains a value
and this value is handled by the device when it interprets the message – eg. It may
commit it to a local variable.

The device still reports completion of the handling using a Response Available
message on the interface's control endpoint but the response read by the host is a
REMOTE_NDIS_SETCOMPLETE type without any returned OID value. Instead it
indicates the success of the set message transaction.

uTaskerRNDIS.doc/1.00 5/24 3.10.16

https://msdn.microsoft.com/en-us/library/ff570633.aspx

www.uTasker.com µTasker – RNDIS

3.3 Handling an Indicate Status Message from the Device

This is probably the most confusing message available since it is used to indicate a status
change – for example a change of the Ethernet link state from Link-down to Link-Up. Or is
used to report an error (or unsupported command) during a message exchange.

Basically it is a device response to a query but can be issued without any query having taken
place.

3.4 Data Message Details

RNDIS data is appended to a REMOTE_NDIS_PACKET_MSG header. If the complete
message size is a multiple of the bulk IN/OUT endpoint size a single zero padding
byte is added so that the final packet sent carries a single byte. This ensures that the
low level USB driver can distinguish that the message has completed and pass it to
the RNDIS layer.

To avoid a message being incorrectly prematurely handled by the host all packets up
to the final one, which will always be of a length less that the endpoint size, must be
of maximum endpoint size.

uTaskerRNDIS.doc/1.00 6/24 3.10.16

www.uTasker.com µTasker – RNDIS

4. Initialisation
Once the USB connection has enumerated the RNDIS host will establish a connection to the
RNDIS device by exchanging various messages, which allows some characteristics of the
two sides to be exchanged before the main operation begins.

The host always starts be sending a REMOTE_NDIS_INITIALIZE_MSG to which the device
responds with REMOTE_NDIS_INITIALIZE_CMPLT, specifying its basic capabilities.

There follows various REMOTE_NDIS_QUERY and REMOTE_NDIS_SET_MSG exchanges
where the host queries device values and commands that others are set. For example, the
device will have a MAC address used by the interface, which the host will request.

Some REMOTE_NDIS_SET_MSG will contain OIDs for the data transfer configuration, to which
the device will respond with REMOTE_NDIS_SET_COMPLETE, after which full communication
is then possible.

The following is a low-level view of the initial REMOTE_NDIS_INITIALIZE_MSG and
response on the USB bus since it illustrates the basic communication technique used by
RNDIS and can serve as reference to understanding such exchanges in case no higher-level
interpretation support is available. The exact sequence is virtually impossible to understand
using only the Microsoft documentation alone since it doesn't give details about how the IN
endpoint informs of the device having responses to be collected.

1. The host sends a SETUP transaction on endpoint 0 with 0x18 bytes of (OUT) data.
1.1 SETUP: 0x21 0x00 0x00 0x00 0x00 0x00 0x18 0x00 {host-to-device request
with 0x18 bytes of data to follow}
1.2 OUT DATA: 0x02 0x00 0x00 0x00 0x18 0x00 0x00 0x00 0x02 0x00 0x00
0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x40 0x00 0x00 {
REMOTE_NDIS_INITIALIZE_MSG as specified by Microsoft and interpreted as follows}
0x00000002: message type
0x00000018: the message length
0x00000002: request ID (changes for each message)
0x00000001: protocol version major
0x00000000: protocol version minor (1.0)
0x00004000: maximum size of any single bus data transfer that the host expects to receive
from the device
1.3 The device responds with a zero data packet on endpoint 0 to indicate that it correctly
received the SETUP and its data content.

2.0 The host will be regularly polling the device's interrupt endpoint and device uses this to
signal when the REMOTE_NDIS_INITIALIZE_MSG has been treated and a response is
available.
2.1 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 {this is a response available
message which is interpreted as follows}

0x01 - type of message
0x00 - specific command
0x0000 - value (not used in this case)
0x0000 - interface (not used in this case)
0x0000 - length (not used in this case)

3.0 Once the host has seen that the result is available it will continue by sending an IN
SETUP transaction on endpoint 0, which will allow the device to return its response to the
original REMOTE_NDIS_INITIALIZE_MSG.
3.1 SETUP: 0xa1 0x01 0x00 0x00 0x00 0x00 0x00 0x10 {device-to-host request
with maximum 4k of data that will be accepted}
3.2 IN DATA (from device): 0x02 0x00 0x00 0x80 0x34 0x00 0x00 0x00 0x02

uTaskerRNDIS.doc/1.00 7/24 3.10.16

www.uTasker.com µTasker – RNDIS

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x01 0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x00 0x00
0x00 0x16 0x06 0x00 0x00 0x03 0x00 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 {REMOTE_NDIS_INITIALIZE_CMPLT as specified by Microsoft
and interpreted as follows}
0x80000002: message type
0x00000034: the message length (The Microsoft document is incorrect in that it suggests
there MUST be 30 bytes here...)
0x00000000: status = success
0x00000002: request ID (changes for each message)
0x00000001: protocol version major
0x00000000: protocol version minor (1.0)
0x00000001: device flags
0x00000000: Ethernet
0x00000001: maximum number of concatenated REMOTE_NDIS_PACKET_MSG that the
device can handle in a single bus transfer to it.
0x00000616: maximum transfer size (1558 bytes)
0x00000003: packet alignment factor (2^3 = 8)
0x0000000000000000: reserved - must be 0

3.3 Finally the host will send a zero data packet to indicate that it has correctly received the
IN data.

After receiving and responding successfully to the REMOTE_NDIS_INITIALIZE_MSG the
RNDIS device is in an initialised state but is not yet ready for data transfers.

4.0 The host will now collect information using several REMOTE_NDIS_QUERY_MSG
messages. The host-to-device SETUPs are not shown in the following since they are
essentially the same, apart from the amount of data that they specify will be sent.

4.1 REMOTE_NDIS_QUERY_MSG with OID of 01 01 01:

0x00000004: message type (REMOTE_NDIS_QUERY_MSG)
0x0000001c: the message length
0x00000003: request ID (changes for each message)
0x00010101: OID - supported OID list request
0x00000000: Information buffer length
0x00000014: Information buffer offset
0x00000000: Reserved for connection-oriented devices (always 0)

The interrupt endpoint's signalling of an available response is not shown here.

4.2 The device responds with details of the requested OID using a
REMOTE_NDIS_QUERY_CMPLT, whereby the host SETUP is not displayed here.

80000004: Type of message (response indicated by 0x80000000 bit set)
00000080: the message length
00000003: response ID
00000000: status (OK)
00000064: information buffer length
00000010: information buffer offset
00010101: OID_GEN_SUPPORTED_LIST [start of general objects]
00010102: OID_GEN_HARDWARE_STATUS

uTaskerRNDIS.doc/1.00 8/24 3.10.16

www.uTasker.com µTasker – RNDIS

00010103: OID_GEN_MEDIA_SUPPORTED
00010104: OID_GEN_MEDIA_IN_USE
00010106: OID_GEN_MAXIMUM_FRAME_SIZE
00010107: OID_GEN_LINK_SPEED
0001010A: OID_GEN_TRANSMIT_BLOCK_SIZE
0001010B: OID_GEN_RECEIVE_BLOCK_SIZE
0001010C: OID_GEN_VENDOR_ID
0001010D: OID_GEN_VENDOR_DESCRIPTION
0001010E: OID_GEN_CURRENT_PACKET_FILTER
00010111: OID_GEN_MAXIMUM_TOTAL_SIZE
00010114: OID_GEN_MEDIA_CONNECT_STATUS
00010116: OID_GEN_VENDOR_DRIVER_VERSION
00020101: OID_GEN_XMIT_OK
00020102: OID_GEN_RCV_OK
00020103: OID_GEN_XMIT_ERROR
00020104: OID_GEN_RCV_ERROR
00020105: OID_GEN_RCV_NO_BUFFER
01010101: OID_802_3_PERMANENT_ADDRESS [start of 802.3 Ethernet operational
characteristics]
01010102: OID_802_3_CURRENT_ADDRESS
01010103: OID_802_3_MULTICAST_LIST
01010104: OID_802_3_MAXIMUM_LIST_SIZE
01020101: OID_802_3_RCV_ERROR_ALIGNMENT [start of Ethernet statistics]
01020102: OID_802_3_XMIT_ONE_COLLISION
01020103: OID_802_3_XMIT_MORE_COLLISIONS

Apart from the final three, which tend to be in the list, the others are defined as being
'required' by the Microsoft RNDIS OID descriptions.

4.3 Based on the list of supported OIDs the host now requests these (or some of them),
whereby just one most example is shown here with the request of the OID 00010106

00000004: Message type (REMOTE_NDIS_QUERY_MSG)
00000020: Message length
00000004: request ID (changes for each message)
00010106: OID OID_GEN_MAXIMUM_FRAME_SIZE
00000004: Information buffer length
00000014: Information buffer offset
00000000: Reserved for connection-oriented devices (always 0)
00000000: Information buffer data

In this case the OID_GEN_MAXIMUM_FRAME_SIZE is requested with an additional 4 bytes of
data, with the value 0.

4.4 The device responds with
0x80000004: Type of message (response indicated by 0x80000000 bit set -
REMOTE_NDIS_QUERY_COMPLETE)
0x0000001C: the message length
0x00000004: response ID
0x00000000: status (OK)
0x00000004: information buffer length (4 bytes)
0x00000010: Information buffer offset
0x000005ea: The data value (decimal 1514 bytes)
uTaskerRNDIS.doc/1.00 9/24 3.10.16

www.uTasker.com µTasker – RNDIS

According to the Microsoft OID description for this object “the
OID_GEN_MAXIMUM_FRAME_SIZE OID specifies the maximum network packet size, in
bytes, that the NIC supports“ and from this point the host thus knows this value so that it can
restrict the size of the network packets send to it.

4.5 As well as collecting varios values from the device the host can set some values of its
own by using the REMOTE_NDIS_SET_MSG message type.
0x00000005: Message type REMOTE_NDIS_SET_MSG
0x00000020: Message length
0x0000000D: request ID (changes for each message)
0x0001010E: OID to be set (OID_GEN_CURRENT_PACKET_FILTER)
0x00000004: information buffer length (4 bytes)
0x00000014: Information buffer offset
0x00000000: Reserved for connection-oriented devices (always 0)
0x00000009: Information buffer data

According to the Microsoft OID description for this object “As a set, the
OID_GEN_CURRENT_PACKET_FILTER OID specifies the types of net packets for which a
protocol receives indications from a miniport driver“.
The value of 0x00000009, as in this example, actually means that the the interface should
receive broadcast and directed (unicast) frames, but not operate promiscuously or in
multicast mode.

4.6 The device simply responds with a REMOTE_NDIS_SET_COMPLETE
to each, indicating that the set was successful.

0x80000005: Type of message (response indicated by 0x80000000 bit set -
REMOTE_NDIS_SET_COMPLETE)
0x00000010: Total length of this message (always 0x10)
0x0000000D: request ID (matching ID in set)
0x00000000: status (OK)

4.7 The host and devices are ready to communicate on the data channel once all required
set parameters have been requested and or set. This state is formally known as the
RNDIS_DATA_INITIALIZED state and in this final state the REMOTE_NDIS_PACKET_MSG
messages can be used. Since it is not actually know how many parameters might be
initialised and also how many times they may be changed during the initialisation the
RNDIS_DATA_INITIALISED state is set on the first REMOTE_NDIS_SET_MSG received.
This is found to be an OID_GEN_CURRENT_PACKET_FILTER used to set the NIC's
hardware filter characteristics - eg. to accept unicast, multicast, broadcast etc. and it is also
found that the filter may be updated with additional flags during initialisation since this set
message is received a multiple number of times, each with a further filter flag set.

4.8 The device can also asynchronously send status information to the host by using the
REMOTE_NDIS_INDICATE_STATUS_MSG message.

0x00000007: Message type (REMOTE_NDIS_INDICATE_STATUS_MSG)
0x00000014: Message length
0x4001000b: Status (RNDIS_STATUS_MEDIA_CONNECT)
0x00000000: status buffer length (no status buffer)
0x00000000: status buffer offset

This status indicates that interface is connected - eg. that the link has gone up (or simulated
in case there is no such physical link state).
uTaskerRNDIS.doc/1.00 10/24 3.10.16

www.uTasker.com µTasker – RNDIS

When there is no physical adapter in use (eg. when the RNDIS interface is directly accessing
the internal TCP/IP stack) this is automatically sent to indicate that the media is connected
so that the host knows that the interface can be used.

4.9 Data transmission is possible from this point on. Usually the host will regularly continue to
request transmit and receive error counters, link speed information, the present connection
status, the current MAC address, etc. and also start using the data channel for
communication a follows:

4.9.1 Bulk OUT
The RNDIS interface's Bulk OUT endpoint is used exclusively to send Ethernet-like data on.

4.9.2 Bulk IN
The RNDIS interface's Bulk IN endpoint is used exclusively to receive Ethernet-like data on.

The following shows an example of the host sending a ping request and receiving a ping
response back from the device. Depending on whether the device is acting as an Ethernet
adapter to a real network of a virtual interface to a local TCP/IP stack the data may or may
not pass onto a physical media and the response be from a remote device; there is no
difference at the RNDIS data message level.

0x00000001: Message type (REMOTE_NDIS_PACKET_MSG)
0x00000076: Message length
0x00000024: Data offset
0x0000004a: Data length
0x00000000: Out of band data offset
0x00000000: Out of band data length
0x00000000: Number of out of bound data elements
0x00000000: Per packet info offset
0x00000000: Per packet info length
0x00000000: Reserved (must be 0)
0x00000000: Reserved (must be 0)
Ethernet II header
ICMP header (host sends ping request and device response with ping response)
Payload of ping test and echo

The message is constructed identically in both directions. Note that the out of band data and
per packet info fields are always 0 in this implementation (they could be used for passing
opaque data to an application) and only one data content is sent in each
REMOTE_NDIS_PACKET_MSG whereby multiple packets per single bus transfer are possible if both
host and device were to specify that they could perform multiple packets per transfer during
the initial negotiation. Although there is a possibility of minimum performance improvement
with multiple short frames packed into one transfer the additional complication is not usually
taken on in many implementations.

uTaskerRNDIS.doc/1.00 11/24 3.10.16

www.uTasker.com µTasker – RNDIS

5. Keep-Alive
During idle periods the host will send a REMOTE_NIS_KEEPALIVE_MSG every 5 seconds to
check that he device is still responsive. It is optional for the device to do the same to check
that the host is active.

The receiver of the message responds with a REMOTE_NDIS_KEEPALIVE_CMPLT which
informs the status of the request.

If the host receives a REMOTE_NDIS_HALT_MSG from a device it will always stop sending
keep-alive messages.

After a host receives a REMOTE_NDIS_RESET_CMPLT message form a device it will restart
its keep-alive timer.

Should a device respond to a REMOTE_NDIS_KEEPALIVE_MSG with a
REMOTE_NDIS_KEEPALIVE_CMPLT message indicating a status that is not
RNDIS_STATIS_SUCCESS the host will reset the device using a
REMOTE_NDIS_RESET_MSG. The host will also send this message if there is no response
received to the REMOTE_NDIS_KEEPALIVE_MSG.

uTaskerRNDIS.doc/1.00 12/24 3.10.16

www.uTasker.com µTasker – RNDIS

6. Reset

The host can command a soft reset of the device using the REMOTE_NDIS_RESET_MSG. The
soft reset is restricted to the RNDIS software [USB base protocols continues operating during
the process], which responds with REMOTE_NDIS_RESET_CMPLT when completed. The
complete message informs whether the multicast address list or packet filter values have
been lost during the process or not, which can cause the host to resend any such
information.

The host will command a device RNDIS reset if the device stops normally responding to
keep-alive messages. It will also use this message if there are problems establishing the
RNDIS connection to the device.

uTaskerRNDIS.doc/1.00 13/24 3.10.16

www.uTasker.com µTasker – RNDIS

7. Disabling and Re-enabling the RNDIS Network Connection

When the RNDIS network connection is disabled at the host the USB bus is set to the
suspended state.

When the RNDIS network connection is re-enabled the USB bus is connected again (leaves
the reset state) without any USB reset of RNDIS level reset or re-initialisation. The RNDIS
operation continues form the state that it left off in.

uTaskerRNDIS.doc/1.00 14/24 3.10.16

www.uTasker.com µTasker – RNDIS

8. Configurations

In its simplest case RNDIS allows a USB to Ethernet adapter to be configured, whereby the
host sees it as a standard network adapter. All Ethernet data sent from the host is passed
onto the physical Ethernet connection and all Ethernet reception is passed to the host
(possibly filtered based on the Ethernet controller settings that apply). The RNDIS host
controls the IP configuration and the device defines the MAC address used. This
configuration is shown below (RNDIS Configuration 1):

RNDIS Configuration 1 – USB-Ethernet Adapter

uTaskerRNDIS.doc/1.00 15/24 3.10.16

www.uTasker.com µTasker – RNDIS

The second configuration allows the USB Ethernet adapter (Configuration 1) to be combined
with a second internal network using the same Ethernet interface. This means that the host
can use the adapter to communicate on the physical network as well as with the second
internal network (assuming both use a suitable IP configuration), which also shares the
physical Ethernet interface. The second internal interface looks like an external device on the
physical LAN to the RNDIS host and both have their own independent MAC address and IP
configuration. This configuration is shown below (RNDIS Configuration 2):

RNDIS Configuration 2

uTaskerRNDIS.doc/1.00 16/24 3.10.16

www.uTasker.com µTasker – RNDIS

The third configuration differs from the second in that there is no physical Ethernet adapter
used. This means that it is suitable for devices that are not connected to Ethernet (having no
physical connection possibility resp. Ethernet controller) but allows the RNDIS host to
communicate with the second network as if it were a (foreign) device on the virtual LAN. The
configuration is particularly practical to allow a web browser on the host to be used to
communicate/configure the device by means of its web server using a USB connection rather
than it needing Ethernet capability. Often the second network will be configured with a DHCP
server that automatically issues the RNDIS adapter interface with suitable IP settings for
immediate communication. This configuration is shown below (RNDIS Configuration 3):

RNDIS Configuration 3

uTaskerRNDIS.doc/1.00 17/24 3.10.16

www.uTasker.com µTasker – RNDIS

The fourth configuration is essentially identical to the third from the perspective of the RNDIS
host since it can only communicate with the second network due to that fact that none of its
traffic is bridged to the physical Ethernet interface. The second network can however operate
on the LAN. This configuration is shown below (RNDIS Configuration 4):

RNDIS Configuration 4

uTaskerRNDIS.doc/1.00 18/24 3.10.16

www.uTasker.com µTasker – RNDIS

The fifth configuration is essentially identical to the third and fourth from the perspective of
the RNDIS host since it can only communicate with the second network due to that fact that
none of its traffic is bridged to the physical Ethernet interface. The second network is
however constructed of a multi-homed network with two independent IP configurations and
MAC addresses. This means that the network seen by the RNDIS host is isolated form the
network that is available from the physical LAN. This configuration is shown below (RNDIS
Configuration 5):

RNDIS Configuration 5

uTaskerRNDIS.doc/1.00 19/24 3.10.16

www.uTasker.com µTasker – RNDIS

To configure USB-CDC in the µTasker project the define USB_INTERFACE is enabled to
have basic USB device operation. USE_USB_CDC is enabled for USB-CDC class (VCOM
and/or RNDIS).

The number of VCOM interfaces required is set with

#define USB_CDC_VCOM_COUNT 1

which can be 0 if only RNDIS is to be used.

The number of RNDIS interfaces required is set with

#define USB_CDC_RNDIS_COUNT 1

where 1 should be used since Windows (Windows 8.1) doesn't presently support more than
one on a single USB interface.

In order to build a pure RNDIS to Ethernet adapter an Ethernet controller must be available
but no further RNDIS settings are necessary.

In order to not use an Ethernet controller, or to avoid communicating between RNDIS and an
Ethernet interface, the define NO_USB_ETHERNET_BRIDGING can be enabled (used in
configurations 2, 3 and 4).

The define USB_TO_TCP_IP can be enabled if the RNDIS interface should communicate
directly with the internal TCP/IP stack (used in configurations 2, 3, 4 and 5).

If further interfaces are required in a composite device they can be enabled by using other
USB class defines such as:

#define USE_USB_HID_MOUSE // human interface device (mouse)
#define USE_USB_HID_KEYBOARD // human interface device (keyboard)
#define USE_USB_MSD // mass storage device

See config.h for a complete list of available classes that can be combined.

uTaskerRNDIS.doc/1.00 20/24 3.10.16

www.uTasker.com µTasker – RNDIS

9. Monitoring RNDIS activity

Once the RNDIS adapter is connected it appears as an Ethernet based interface to
Wireshark. This means that its data activity can be monitored in the same way that Ethernet
activity on a physical LAN interface can be monitored, including full interpretation of the
TCP/IP content. This does of course require that the RNDIS functionality is operation
because it gives no information about the RNDIS header or USB class operation.

To monitor the RNDIS class activity a HW USB analyser can be used, whereby some will be
able to decode the class activity once the device has successfully enumerated.

Wireshark can also be used to perform monitoring of the RNDIS USB layer, plus the data
content by using its USBPcap plug-in. This is described at
http://desowin.org/usbpcap/tour.html and allows even monitoring of enumeration. Although
this feature is relatively new and requires some further development it already allows quite
extensive monitoring an debugging USB and RNDIS USB without needing a dedicated USB
analyser.

uTaskerRNDIS.doc/1.00 21/24 3.10.16

http://desowin.org/usbpcap/tour.html

www.uTasker.com µTasker – RNDIS

10. Installation
The first time that the USB device is connected to the USB host the RNDIS installation
process has to be executed. Windows uses its drivers:

Rndismpx.sys

usb8023x.sys

It is not always necessary to deliver an *.ini file because a standard Windows RNDIS driver
can be manually selected during the process. The following shows the RNDIS device being
connected to a Windows 10 computer, where the computer displays the connected device
initially as an unknown type - notice the exclamation mark signalling that there is a problem:

Opening the device's properties shows that no driver has been installed since the PC doesn't
know which driver to use. The button “Update Driver...” is used to start the installation
process again, whereby the user can select the option “Browse my computer for driver
software” followed by “Let me pick from a list of device drivers on my computer”:

uTaskerRNDIS.doc/1.00 22/24 3.10.16

www.uTasker.com µTasker – RNDIS

The device type can be selected as being a Network Adapter and then Microsoft as
manufacturer, specifying that it is a “Remote NDIS based Internet Sharing Device”:

At the final step there is a warning message that the device driver is not recommended but it
can nevertheless be installed by clicking the “Yes” button.

uTaskerRNDIS.doc/1.00 23/24 3.10.16

www.uTasker.com µTasker – RNDIS

11. Conclusion

RNDIS uses the USB-CDC class as base for its operation. It adds encapsulated commands
and responses to establish a virtual networking connection that can be used to interface an
Ethernet controller to a host or to allow a host to communicate with a connected device using
network protocols. Various such configuration possibilities have been illustrated in the
document.

A useful feature of devices that can communicate with a host as a virtual network device is
that they can use infrastructure, such as Web Browsers and FTP servers, to allow data to be
exchanged with them and also to allow a user interface to be implemented without needing
to have a physical Ethernet interface. This allows products for a manufacturer to share such
interfaces between Ethernet based equipment (those that have an Ethernet controller) and
simpler USB based variants (those that have no Ethernet in order to save cost and power
consumption). It is possible to, for instance, use a standard web browser based configuration
and control tool for all parts rather than having to use different programs.

The document has explained the underlying operation of RNDIS communication, with some
reference data for better understanding. Instructions for configuring, installing and monitoring
operation has further been given.

The µTasker project contains a RNDIS device implementation that can be easily activated
and shared with other composite devices, including one or more USB-CDC VCOM
connections at the same time.

Modifications:

- V0.01 7.2.2016: - First draft – in progress
- V1.00 3.10.2016: - First release version

uTaskerRNDIS.doc/1.00 24/24 3.10.16

