

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 1/8 26.02.2007

Introduction

µTasker is an operating system designed especially for embedded applications where a tight
control over resources is desired along with a high level of user comfort to produce efficient
and highly deterministic code.

The operating system is integrated with TCP/IP stack and important embedded Internet
services along side device drivers and system specific project resources.

µTasker and its environment are essentially not hardware specific and can thus be moved
between processor platforms with great ease and efficiency.

However the µTasker project setups are very hardware specific since they offer an optimal
pre-defined (or a choice of pre-defined) configurations, taking it out of the league of “board
support packages (BSP)” to a complete “project support package (PSP)”, a feature enabling
projects to be greatly accelerated.

This document discusses the implementation and use of the SMTP interface in the V1.3
release.

Introduction to the µTasker SMTP implementation

SMPT – Simple Mail Transfer Protocol – is used to send Emails over the internet and as
such is a very widely used protocol.

µTasker supports sending textual emails without attachments, either with no authentication
or optionally with LOGIN authentication. Combined with DNS support it can perform the
transmission to an SMTP server at a know address such as smtp.provide.com. If no DNS
support is needed or wanted, it performs the same function to the fixed IP address of the
SMTP server.

Note that it is generally recommended to use DNS since the SMTP servers do sometimes
change IP addresses (much less common is a change of its web address) and this would
require reconfiguring devices before Email transmission can function properly again.

The demo project includes optional support of browser based SMTP configuration and
saving to FLASH. Alternatively such settings can be hard coded into the project. The demo
project also includes a test of email transmission.

What use are Emails in an embedded project?

Of course an embedded device is not going to compose lengthy emails to keep its friends
informed of what it has been up to, but it may have reason to inform someone of certain
events that have taken place.

Image that an embedded device is used to monitor the wear of a component in a piece of
machinery – say using a value obtained by periodically sampling a voltage. Perhaps the
voltage indicates that the wear is getting close to a limiting value which will require part
replacement or general service work to be performed. It may set an output to light up a
warning LED to draw attention to the fact but what if no one looks at it or the machinery is
generally not monitored by an operator? What might you do if you were employed to keep an
eye on the machine? Well what is typical today is to write an email and send it to the service
department of the company responsible for the maintenance of the equipment, suggesting
that a service visit be planned within the next couple of weeks.

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 2/8 26.02.2007

This is of course something that the embedded device could also do itself. It could also
repeat the request say every day just to ensure that it is not forgotten. There are of course
numerous other examples where such services can be very useful.

Configuring µTasker to use SMTP

The define USE_SMTP is used to activate the SMTP support in the project. This includes the
contents of the file smtp.c as well as adding the fnSmtp() task. One TCP socket is
reserved for use by the SMTP client.

There are a few configurations which are performed in config.h which can be adjusted to
suit the project.

#define SMTP_MESSAGE_LEN 300 // Frame length of SMTP transmissions
Transmitted TCP frames are built on stack so are represent only short
occupation of memory. If only short emails are to be sent this value can
be set to a value allowing the complete mail to be transmitted in one
frame. If the processor used has tight memory restrictions small frame
lengths ensure that the stack use is minimised but may result in the
email transmission being performed in a number of small frames. In fact
the speed of email transmission is generally not of great importance and
so even quite small values will not cause problems.

#define USE_SMTP_AUTHENTICATION // support login when sending Email

This define enables code to support login authentication. Setting the
define doesn’t force login since it is optionally performed when the
connection is established. If you need to be able to do authentication
it will be necessary to activate this however.

#define SMTP_PARAMETERS // support SMTP parameters in parameter system

This define adds all important SMTP configuration settings to the
parameter system in the demo project. These allow the user to configure
the SMTP, save it and later change it if required. Without this support
all configuration settings are hard coded and can therefore only be
changed by recompiling the project.

Sending an Email

This is in fact very easy to do but does require a little bit of preparation…

Since we are SMTP client it is not necessary to previously configure the protocol. The email
transmission is invoked by the following call.

fnConnectSMTP(ucSMTP_server, SMTP_LOGIN, fnEmailTest); // use login

fnConnectSMTP(ucSMTP_server, 0, fnEmailTest); // no login

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 3/8 26.02.2007

extern int fnConnectSMTP
 (unsigned char *ucIP,
 unsigned char ucMode,
 const CHAR *(*fnCallback)(unsigned char, unsigned short *));

ucSMTP_server is the IP address of the SMTP server which is connected to. It is either
known or resolved using DNS from the web address of the server. See the demo project
(application.c for an example of how DNS can be started and the transmission takes
place subsequently after the IP address has been resolved.

The mode is either SMTP_LOGIN or nothing. When login is specified, the SMTP client will
first request that the server performs the login authentication sequence before sending the
email. Many SMTP servers require that this takes place and will refuse emails if this option is
not used – and the number is growing since this is a method which helps avoid spam.

fnEmailTest is a call back function which the application must handle during the process.
It then supplies various details and also the email contents itself. The following is an extract
from the demo project which will be used in the following discussion. It has been simplified
slightly and supports SMTP options from the parameter system. See the demo project
(application.c) for the original code.

// Email call back handler
//
static const CHAR *fnEmailTest
 unsigned char ucEvent, unsigned short *usData)
{
switch (ucEvent) {
case SMTP_GET_DOMAIN: return cUserDomain;
case SMTP_USER_NAME: return temp_pars->temp_parameters.ucSMTP_user_name;
case SMTP_USER_PASS: return temp_pars->temp_parameters.ucSMTP_password;
case SMTP_GET_SENDER: return temp_pars->temp_parameters.ucSMTP_user_email;
case SMTP_GET_DESTINATION: return cEmailAdd;
case SMTP_GET_SUBJECT: return cSubject;
case SMTP_SEND_MESSAGE:
 { // here we can send our Email message
 unsigned short usEmailPosition = *usData;
 if (usEmailPosition >= (sizeof(cEmailText) - 1)) {
 *usData = 0;
 return 0; // Email has been completely sent
 }
 else { // remaining length
 *usData = (sizeof(cEmailText) - 1) - usEmailPosition;
 } // return a pointer to the next part of message
 return (const CHAR *)&cEmailText[usEmailPosition];
 }

case SMTP_MAIL_SUCCESSFULLY_SENT: break // email successfully sent!!

// various possible errors – we could repeat or try with other settings
case ERROR_SMTP_LOGIN_FAILED: // user name and password incorrect
case ERROR_SMTP_LOGIN_NOT_SUPPORTED: // we are trying to use login but the
 server doesn't support it
case ERROR_SMTP_POLICY_REJECT: // we are not using login but the
 server insists on it
 break;
}
return 0;
}

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 4/8 26.02.2007

When the transmission process is started, the client doesn’t know anything about the
message to be sent, it needs only to know the IP address of the server to be contacted.

After successfully establishing a TCP connection on port 69 with the SMTP server there is a
standard procedure to prepare for the actual email transmission which requires the
application passing some details. As can be seen from the call back function code this
involves various strings, such as email addresses, possibly user name and password, and a
subject. After the initialisation procedure and possibly login it is up to the application to pass
also the email content in chunks until it has completely been transmitted.

To see the sequence it is simplest to record the Ethernet activity (using Ethereal) when a test
email is sent, which shows the following sequence [notice that commands and responses are
terminated using CR + LF (0x0d 0x0a) or “\r\n”].

1. TCP Connection

2. The SMTP server response with a ready message (Code 220)

3. The SMTP client sends EHLO code with its domain information. Here the call back
function is activated with event SMTP_GET_DOMAIN to delivers the string. In the demo
project the string is defined in config.h
#define OUR_USER_DOMAIN "my_domain.com";
The actual domain information supplied tends to be unimportant.

4. The SMTP server then sends the welcome message (Code 250) with some text like
“please to meet you” followed by some details about what types of login are
accepted.

5. If we are to do login this is where it is requested, if not we jump to step 11
The SMTP client sends the AUTH command with the parameter LOGIN.

6. Should the SMTP server not support this method it will answer with a fatal error code
501 and the attempt is terminated. In this case it will be necessary to remove the
LOGIN option and send without it.
Assuming that the SMTP server does support LOGIN, it replies with the request code
(334) and base64 coded text – which reads “VXNlcm5hbWU6” and is coded
“Username:”

7. The SMTP client call back is now activated with the event SMTP_USER_NAME and is
responsible to pass back a pointer to the user name. In the demo project this is either
a fixed user name, defined in the project hardware header (eg: app_hw_ne64.h)
#define SMTP_ACCOUNT_NAME "smtp_user"
or else it is a parameter string in the parameter system (see below for more details of
configuring using a web browser).
The string is coded to base64 format and sent to the SMTP server

8. The SMTP server then requests the password in a similar fashion using the request
code 334 followed by “UGFzc3dvcmQ6”, meaning “Password:”.
Note that this authentication is not very strong since it is in fact very easy to transfer
between the coded and decoded strings – just search for base64 on the internet to
find one of a variety of online encoding/decoding tools…

9. The SMTP client call back now receives the event SMTP_USER_PASS and can deliver
a pointer to the password in a manor equivalent to the user name. This is either a
fixed password in the project hardware header or a user parameter.
#define SMTP_PASSWORD "smtp_password"

10. The reaction of the SMTP server depends on whether it can find a matching user
name and password combination or not.
A code 535 indicates a failed login attempt and a code 235 indicates a successful

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 5/8 26.02.2007

login. In the case of a failure the call back function receives the event
ERROR_SMTP_LOGIN_FAILED or else the procedure continues.

11. Assuming either successful login or else no login (we have just jumped from step 5)
the SMTP client call back is activated with the event SMTP_GET_SENDER and must
return a pointer to the sender’s email address. This is either a fixed string or a user
parameter.
#define SENDERS_EMAIL_ADDRESS "NE64@uTasker.com" (eg. in
app_hw_ne64.h).
The user’s email address is generally not important to being accepted and can
therefore even be fictive.

12. The SMTP server responds with the OK (Code 250) which causes the SMTP client
call back to be activated with the event SMTP_GET_DESTINATION and must now
return a pointer to the destination email address.
In the demo project this is a string initialised with a default address from config.h
#define DEFAULT_DESTINATION_EMAIL_ADDRESS "test_name@test.com";
It is then modified in the email test on the start page of the web server – see below.
An application could of course also use a list of email addresses to be sent to
depending on which actual message is to be transferred.

13. The SMTP server responds with OK (Code 250) which causes the SMTP client to
send the command DATA, meaning that it now wants to send an email.

14. The SMTP server responds with the code 354 and usually a remark that the email
can begin and should be terminated by a line with only a single ‘.’ in it. This causes
the SMTP client call back to be activated with the event SMTP_GET_SUBJECT since
the first part of the email body contains also the email subject.
#define EMAIL_SUBJECT "NE64 Test" (eg. in app_hw_ne64.h).
The SMTP client now sends a first TCP frame to the SMTP server with a lead-in
constructed from:
To : test_name@test.com[CR + LF]
Subject: NE64 Test[CR + LF]
From: NE64@uTasker.com[CR + LF]
[CR + LF]

15. The SMTP client call back routine is now responsible for passing the email contents.
It is called with the event SMTP_SEND_MESSAGE and can return a pointer to the
textual contents to be transferred.
It is important to understand that the email transmission itself may require a number
of TCP frames to be sent and so the event may have to be handled a number of
times before the complete text has been transmitted. In case of a frame loss, the
repeated portion of the email text also has to be regenerated in the call back routine.

The project demo code illustrates how simple this however can be performed. The
call back routine also receives a pointer to an offset in the email text, which is initially
zero. It uses this to calculate the pointer to the next part of the message and also
modifies it with the remaining text length after the frame has been transmitted.
Repetitions are thus automatically performed if the SMTP client modifies the length
back to the position or the previous frame. The end of transmission is detected when
the transmitted length becomes equal to the email message itself.

The email text is defined as a fixed string in the demo project:
#define EMAIL_CONTENT "Hello!!\r\nThis is an email message
from the DEMO9S12NE64.\r\nI hope that you have received this
test and have fun using the uTasker operating system with
integrated TCP/IP stack.\r\r\nRegards your DEMO9S12NE64!!";

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 6/8 26.02.2007

(eg. in app_hw_ne64.h).

16. The SMTP client inserts the EOM (end of message) sequence of a single line with
just a ‘.’ When the call back indicates that the complete message has been processed
(when it returns a null pointer as response to the SMTP_SEND_MESSAGE event.

17. The SMTP server acknowledges the EOM with the code 250, after which the SMTP
client sends the QUIT command.

18. The SMTP server initiates closing the connection after code 221, indicating that it is
going to close.

19. The TCP connection is terminated by the server and the SMTP client call back routine
receives a final confirmation event SMTP_MAIL_SUCCESSFULLY_SENT.

This means that the email was successfully send to the SMTP server but not
necessarily that it will actually reach its final destination!! The rest of the process does
however not lie in the hands of the SMTP client…

The SMTP process is indeed quite straight forward and the SMTP code in the µTasker
can be easily followed in smtp.c. It is also practical to test it with the simulator and step
through any routines of interest. The only invisible extra function which it performs is to
monitor the connection with a timer of 30s. If there is no SMTP activity after a TCP
connection has been established, it will timeout to avoid the SMTP connection being
blocked. In this case the SMTP client call back will receive the event
ERROR_SMTP_TIMEOUT.

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 7/8 26.02.2007

µTasker demo project support

The µTasker demo project includes an email test on the first page of its web server. It
also includes optional configuration via web browser.

The SMTP support can be activated and configured as described earlier on in this
document. The following is a typical screen shot of the start page of the demo project
web server.

If the SMTP support is not activated in the project the Email address entry field will be
disabled.

If the project is not configured with parameter support, all SMTP settings are fixed and
can only be changed by recompiling the project.

Even when the project supports SMTP parameters the standard web pages do not
support configuration of these, but I will explain here how it is easily changed to allow
this. This also illustrates quite a powerful feature of the µTasker design since it allows
such tasks to be performed on a temporary basis, which relieves the project of having to
have full time space reserved for the functions.

• In the web pages folder to the project open the folder “AlternativePages” where
you will find a HTML file specifically for the set up of emails (eg. MEmail.htm or a
similar name which suits the processor project you are using).

• Copy this file via FTP and it will overwrite the administration page.

• Browse to the administration page to see the following:

www.uTasker.com µTasker – SMTP

uTaskerSMTP.doc/0.01 8/8 26.02.2007

Using this temporary web side you can comfortably set up the SMTP client to suit your
requirements, either with or without LOGIN authentication. Once the parameters have been
set to suit, save the settings and send a test email on the start side to be sure that all is
working well.

Note that the SMTP IP address is disabled if DNS is active in the project (in this case the
SMTP server address is important). However the resolved IP address will be displayed.

If DNS is not active in the project the SMTP server address filed is disabled and the IP
address of the server must be entered and save.

Once you have finished the set up, simply reload the original administration page via FTP
and all will be as before – apart from the fact that your SMTP setting are now as required.

Conclusion

The SMTP support, including LOGIN authentication, enables embedded devices to make
use of Email. Practical and comfortable set up is supported, which has also shown how such
functions can be temporarily loaded to a project so that they do not occupy valuable
resources when no longer needed.

