

uTaskerSSC.doc/V1.01 Copyright © 2010 M.J.Butcher Consulting

���������	�
	��

�����	

µTasker Document

µTasker – ATMEL SAM7X SSC Driver

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 2/12 19.02.2010

Table of Contents
1.� Introduction ...3�
2.� Activating SSC support in the SAM7X Project ..3�
3.� Transmission ...4�

3.1.� Transmission Problem and Workaround ...5�
4.� Reception ..6�
5.� Configuring the SSC Interface ...7�
6.� Loop-Back Test Configuration Example ..8�

6.1.� Transmitting Data ..8�
6.2.� Receiving Data ... 10�

7.� SSC Simulation with the uTasker simulator ... 11�
8.� Conclusion .. 12�

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 3/12 19.02.2010

1. Introduction

This document describes the use of the SSC driver interface together with the ATMEL
SAM7X. The application is specific to a certain form of communication to and from a second
processor (DSP) and so not general in nature.

2. Activating SSC support in the SAM7X Project

To work with the SSC define SSC_INTERFACE must be activated in config.h. This enables
the driver code.

Specific details concerning the interface are defined in app_hw_sam7x.h:

// SSC Interface
//
#ifdef SSC_INTERFACE
 #define OUR_SSC_CHANNEL 0 // SAM7X has only one SSC interface
 #define NUMBER_SSC 1 // one SSC available
 #define SSC_SUPPORT_DMA // enable SSC DMA support
 #define SSC_DMA_DOUBLE_BUF_RX // use double buffering DMA on reception
 #define LOG_SSC0 // log transmission to SSC0.txt
#endif

Note that the SSC is usually used as high speed communication interface with framing,
which makes DMA operation particularly relevant. Double buffering at the receiver is
necessary to keep up with high speed, back-to-back receptions (streaming).

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 4/12 19.02.2010

3. Transmission

The application required a configuration allowing the application to define a fixed length block
of data to be prepared and transmitted as a single frame. This frame is signalled by a
synchronisation signal so that the remote receiver can identify its start. The synch signal and
transmission clock are thus generated by the transmitter.

��������

��������

��������

Figure 3-1 General transmission framing example

Figure 3-1 illustrates the general operation of the three transmission lines.

TF is the framing signal, in this case it is a negative pulse as the frame starts (exact timing of
its position is configurable). The TK output from the processor is the clock signal – in this
case it is shown generating 8 clocks only when the example 8 bit frame is valid. The TD
signal sends the data bits (either in LSB or MSB format).

This example shows a single 8 bit byte being sent for simplicity. The works size can however
be adjusted and 16 bits words are used in the application. The frame also contains only one
word, whereby the application sends always 16 words in a frame; the application frame will
thus be 16 x 16 (256) clocks in length and contain 16 discrete 16 bit words.

After a complete frame has been sent, the signals generally remain in their idle states until a
further frame is to be sent. The dotted lines show a second frame being sent immediately
after the first has finished, which is also the case when multiple frames are prepared and
transmitted.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 5/12 19.02.2010

3.1. Transmission Problem and Workaround

It was found not to be possible to operate the TK signal only when the frame data was
present since the clock, although generating the correct number of clock pulse, was offset to
the transmitted data.

��������

��������

��������

Figure 3-2 Transmission of 0x00

Figure 3-2 shows the result of transmitting a frame containing a single byte of value 0x00.
There are 8 clock pulses but the first data bit is a ‘1’. After the final clock pulse the final data
bit is sent on the line, but without a corresponding clock. This results in the receiver receiving
the value 0x80 if the 8 clock pulses are used.

By allowing the TK to free-run (continuously sending clocks, even when no data is being
transmitted) the receiver can correctly receive the data as long as it is programmed to start
receiving one clock after the synch. This is the mode used for this application.

Due to the fact that the transmitter has to operate in periodic mode in order to generate the
frame signal it also needed to be disabled after the frame transmission(s) have completed. It
is important that the frame size is never defined less than 4 words in length in order for the
disabling to take place once the frame has started operation – if less size is used the
transmitter disabling take space before the first word has been completely copied to the
output FIFO by DMA and so the frame is corrupted by the disable operation. Disabling the
transmitter after a frame has started is otherwise not a problem since the frame will then be
completely transmitted before the transmitter actually stops operation.

If the transmitter were not enabled only when transmitting a frame and disabled afterwards
the TF signal would be continuously generated so that the remote receiver would see data all
of the time.

If the periodic transmission were to take place continuously and data sent at arbitrary points
in time, it would also be sent without any synchronisation to the frame sync signal. By
enabling the transmitter at the start of only data transmissions the synchronisation is
achieved.

Since the transmitter needs to be disabled by the transmit interrupt routine, delays in
servicing this lead to additional empty frames (with content 0xffff) to be sent until the
transmitter is finally disabled. The receiver must be able to handle this (recognise that there
is no valid data available). This effect is more pronounced as the transmission speed
increases.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 6/12 19.02.2010

4. Reception

The receiver is configured to require an input frame synchronisation to start frame reception.
Once the synchronisation has occurred a single frame of data will be received and copied to
the input buffer. The end of frame interrupt allows the driver to signal to the user that there is
a frame full of data to be read. It also causes the next frame buffer to be prepared so that the
SSC receiver can continue receiving further data. It is advisable to always use double-
buffered DMA operation.

As long as the receiver interrupt can be serviced before a second complete frame has been
received no data will be lost. At 5MHz and with no gap between reception frames, this give
an interrupt rate of 51µs and so a maximum latency which must be achieved to ensure
continuous reception within a burst of more than two consecutive 16 x 16 bit frames.

Since interrupts may be blocked for periods of several ms when internal FLASH to the
SAM7X is written or deleted, loss of continuous SSC data may occur. This can be avoided by
either not allowing such operations when the SSC is in operation or else allowing the SSC
DMA complete interrupt to still be serviced, with the handling routine and all its sub-routines
in internal SRAM (not FLASH).

Note that the receiver copies received frames directly to its input buffer by DMA using a DMA
swap buffer (double-buffered DMA operation). The reception buffer should therefore be at
least 2 frame lengths in size and should also be of a size equal to a multiple of the frame
size; the buffer size is counted in words when configured, where the word width is
configurable.

The application must read data from its input buffer before the buffer fills up with the
maximum number of receive frames that it can store. By allocating larger input buffer sizes
(tInterfaceParameters.Rx_tx_sizes.RxQueueSize) the application reaction time to
reading received data becomes less critical since the driver can queue more frames.

Notes:

- Internal loop-back mode causes an additional frame with 0xffff content to be received
even though no additional sync is seen.

- HW loop back (TF -> RF; TK -> RK; TD -> RD) doesn’t have the same problem.

- HW loop back at 5MHz has an additional frame of 0xffff content at end due to the fact
that the transmitted doesn’t disable fast enough to stop this.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 7/12 19.02.2010

5. Configuring the SSC Interface

The SSC is configured in a similar way to the UART, using the fnopen() command.

static void fnInitI2S(void)
{
 SSCTABLE tInterfaceParameters; // table for passing information to driver
 tInterfaceParameters.Channel = OUR_SSC_CHANNEL; // set I2S channel for use
 tInterfaceParameters.usSpeed = ((MASTER_CLOCK/2)/(5000000));// data rate 5MHz
 tInterfaceParameters.Task_to_wake = OWN_TASK;// wake self when frames received
 tInterfaceParameters.ucTxDataShift = 1;
 // bit shift from sync to start of transmit data
 tInterfaceParameters.ucRxDataShift = 2;
 // bit shift from sync to start of receive data
 tInterfaceParameters.usConfig = (TX_CLOCK_INVERTED | TX_MSB_FIRST |
 TX_NEGATIVE_FRAME_PULSE | RX_MSB_FIRST | RX_CLOCK_INVERTED | RX_SYNC_FALLING);
 tInterfaceParameters.ucWordSize = 16;
 // transmit and receive data treated as words of this width
 tInterfaceParameters.ucFrameLength = 16; // the number of words in a frame
 tInterfaceParameters.Rx_tx_sizes.RxQueueSize = 256;
 // input buffer size (in words)
 tInterfaceParameters.Rx_tx_sizes.TxQueueSize = 128;
 // output buffer size (in words)
 #ifdef SSC_SUPPORT_DMA
 tInterfaceParameters.ucDMAConfig = (UART_TX_DMA | UART_RX_DMA);
 // activate DMA on transmission and reception
 #endif
 if ((I2S_handle = fnOpen(TYPE_SSC, FOR_I_O, &tInterfaceParameters)) != 0) {
 // open the channel with defined parameters
 fnDriver(I2S_handle, (TX_ON | RX_ON), 0); // enable rx and tx
 }
}

Since user data can be of different word sizes (1 to 4), the transmit and receive buffers used
to hold the user data are aligned to appropriate boundaries in heap. This also ensures that
the DMA controller used to transmit and receive data operates always aligned.

The word length of the input and output buffers must be chosen to be multiples of the frame
length. At least 4 x frame length is suggested to ensure efficient DMA operation.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 8/12 19.02.2010

6. Loop-Back Test Configuration Example

6.1. Transmitting Data

Data should normally be transmitted in frame block sizes only. It is possible to transmit only
one block or a multiple of blocks as shows in the following examples, whereby the data is
prepared in an array of elements of the defined SSC word size (16 bits in the example).

 static unsigned short usTest[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
 fnWrite(I2S_handle, (unsigned char *)usTest, 16);

The first example shows a 16 x 16 bit array being transmitted as single frame

 static unsigned short usTest1[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};
 static unsigned short usTest2[16] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

 fnWrite(I2S_handle, (unsigned char *)usTest, 16);
 fnWrite(I2S_handle, (unsigned char *)usTest, 16);

The second example shows 2 x 16 x 16 bit arrays being transmitted. The two writes cause
the first frame to be started and the second frame to be queued. Once the first frame
transmission has terminated, the second frame will immediately by sent.

Note that the transmitter has to be deactivated by the transmitter interrupt routine once the
DMA controller has completed its transfer. Should the interrupt be delayed until after the first
frame transmission has also physically been completed (next frame sync will be generated)
the second block will not necessarily be synchronised to the frame and errors may occur at
the remote receiver. It is therefore recommended that this method is not used, but rather
either the SW waits until the initial transfer has completed (eg. by limiting the rate of calls), or
else the third technique be used as follows:

 static unsigned short usTest3[32] = {1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16
 17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32};

 fnWrite(I2S_handle, (unsigned char *)usTest, (16*2));

The third example shows 2 x 16 x 16 bit arrays being transmitted started by a single write.
The single write ensures that the DMA controller transfers multiple frames without any
processor intervention, which guaranties that the two frames are consecutive with no de-
synchronisation.

However it should be noted that, if the interrupt at the end of frame transmission is delayed it
is possible for the SSC transmitter to continue with the next frame, resulting in an empty
frame (the frame synch is generated and the corresponding number of frame clocks are
generated, but no data is sent – the data line remains at ‘1’). In this situation the remote
receiver will receive 16 x 0xffff and may need to be able to recognise this as a non-valid
frame.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 9/12 19.02.2010

The following code shows a test of transmitting 8 x 16 x 16 frames periodically (called
subsequently on the E_NEXT_SSC_TEST event) with a recognisable pattern.

static void fnSendSSC_Test(void)
{
 static unsigned short usTest[128] = {0};
 if (usTest[0] == 0x0000) {
 int i = 0;
 while (i < 128) {
 usTest[i] = (i + 1);
 i++;
 }
 }
 else {
 int i = 0;
 while (i < 128) {
 usTest[i] += 1;
 i++;
 }
 }
 fnWrite(I2S_handle, (unsigned char *)usTest, 128); // transmit test
 uTaskerMonoTimer(OWN_TASK, (DELAY_LIMIT)(2.0*SEC), E_NEXT_SSC_TEST);
}

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 10/12 19.02.2010

6.2. Receiving Data

The receiver task is woken each time a frame of data has been received and can read its
input buffer. The following shows the reception and display of frames to verify that the
transmitted data is received correctly.

 while (fnRead(I2S_handle, (unsigned char *)usI2C_data, 16) != 0) {
 int i = 0;
 fnDebugMsg("I2S Data Received:");
 while (i < 16) {
 fnDebugHex(usI2C_data[i++], (WITH_LEADIN | WITH_SPACE | 2));
 }
 fnDebugMsg("\n\r");
 }

The following is the output data seen on the debug interface (after transmission of 5 blocks of
8 frames). The test is performed with the SSC Tx lines connected directly to the SSC Rx
lines, where the configuration in section 5 was used. When connected to a remove device
the Rx and TX configurations don’t need to match and depend on the exact requirements of
the remote device.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 11/12 19.02.2010

As discussed previously, the transmitter has to be disabled after a block of frames has been
transmitted and cannot always achieve this at high data rates. The following shows a high
data rate where a subsequent blank frame is transmitted:

7. SSC Simulation with the uTasker simulator

Data transmitted to the SSC interface is saved to the file SSCx.txt when the project-define
LOG_SSC0 is active, where x is the SSC port number. This allows the transmitted data to be
verified.

More useful is generally a method of testing reception frames since software will usually
need to be developed which reacts to the content of this data. This is achieved by playing in
a simulation script, an example of which is shown below:

// Receive I2S test messages from DSP

+0 SSC-0 = 00 0c 01 02 03 04 05 06 07 08 09 0a 0b 0c 0d 0e 0f 10 11 12 13 14 15 16 17 18 19 1a 1b 1c 1d 1e
+100 SSC-0 = 00 0c 02 01 04 03 06 05 08 07 0a 09 0c 0b 0e 0d 10 0f 12 11 14 13 16 15 18 17 1a 19 1c 1b 1e 1d
+100 SSC-0 = 00 0c 03 03 04 05 06 05 08 07 0a 09 0c 0b 0e 0d 10 0f 12 11 14 13 16 15 18 17 1a 19 1c 1b 1e 1d
+100 SSC-0 = 00 0c 04 04 05 04 06 05 08 07 0a 09 0c 0b 0e 0d 10 0f 12 11 14 13 16 15 18 17 1a 19 1c 1b 1e 1d

// End of test

The script is loaded and started when the menu command “Port Sim | Open Script” or
“Port Sim | Repeat last script” is executed. Note that the last script is only saved
when the simulator is executed normally and so new scripts do not become valid if the
simulator is interrupted instead of closed.

This example shows four frames of each 32 bytes being received on SSC0; the first frame
arrives immediately and the following each with 100ms delay. The script commands can be
mixed with other types (such a UART reception, port state changes, etc.) if required.

The result is that 4 frame receptions are executed, which allows the complete reception path
(including DMA, the interrupt routine, driver layer and the application handling) to be
exercised – by using various reference scripts, typical cases can be simply tested as
required, or a complete test suit can be achieved by a single more complex script.

www.uTasker.com µTasker – Synchronous Serial Controller V1.4

uTaskerSSC.doc/1.01 12/12 19.02.2010

8. Conclusion

The SSC driver for the SAM7X allows the application to simply configure the interface and
subsequently send and receive blocks of frame data.

The SAM7X has been found to not be optimally suited to the transmission of bursts of frame
data in this format due to the fact that the SSC interface needs to operate in streaming mode.
The solution to this problem was to enable the transmitter only when actually sending data,
although it was found to be necessary to also allow the TK to run continuously.

There were no difficulties experienced with data reception and a high rate can be achieved
by using the double-buffered DMA capabilities of the chip in conjunction with an adequate
input buffer length.

Modifications:

V1.00 31.8.2009: First version
V1.02 19.02.2010: Add SCC simulation script

