
Embedding it better...

µTasker Document

µTasker – Serial Loader User’s Guide
(USB-MSD Host/Device, SD card, KBOOT, AN2295

Developer's Serial Bootloader, Modbus Slave, I2C Slave
and Ethernet Web Server/FTP Server)

uTaskerSerialLoader.doc/1.13 Copyright © 2021 M.J.Butcher Consulting

www.uTasker.com µTasker – Serial Loader User’s Guide

Table of Contents
1.Introduction..3

1.1 SREC Loader..3
1.2 AN2295 Developer's Serial Bootloader..3
1.3 USB-MSD Device Operation..3
1.4 USB-MSD Host Operation...4
1.5 USB-HID..4
1.6 KBOOT UART...4
1.7 SD Card Operation..4
1.8 Ethernet Web Server...4
1.9 FTP Server..5
1.10 Modbus Slave..5
1.11 I2C Loader..5

2.Programming the µTasker Serial Loader...7
3.Building the µTasker Serial Loader...8
4.Using the µTasker Serial Loader - SREC..8
5.Intermediate Buffer Required for Certain Processor Types...15
6.Preparing an Application and working with the Serial Loader..16
7.USB-MSD Device Boot Loader..17

7.1 USB MSD Device Implementation Details..20
7.2Software Password Protection...22
7.3Software Overwriting...22
7.4Compatibility and Disclaimer..23

8.USB-MSD Host Bootloader...24
9.USB-HID...26
10.KBOOT UART..27
11.AN2295 Developer's Serial Bootloader...28
12.SD-Card Loader...29

 12.1 Loading Multiple Files and Controlling the location of the Firmware File(s).............34
13.Ethernet Web Server..37
14.FTP Server...39
15.Modbus Slave Loader..41
16.I2C Slave Loader...44
17.Conclusion...47
Appendix A – Target and Compiler Specific Details...49

a)Coldfire CodeWarrior..49
b)Kinetis CodeWarrior..51
c)Luminary-Micro Evaluation Boards and GCC Compiler..53
d)AVR32 - AT32UC3B0256 on EVK1101 using IAR..54

Appendix B – Application Requirements for use together with the µTasker Serial Loader . . .56
Appendix C – Serial Loader Mailbox, Ensuring its Application Settings and Enabling Security
...57

uTaskerSerialLoader.doc/1.13 2/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

1. Introduction

Often there is the requirement to be able to install a small loader software to a board, which
then allows application software to be loaded via a serial port, USB or other such methods.
Furthermore, the loader should enable the application software to be deleted on request and
the programming of further versions as required.

Some processors include a pre-installed loader of this nature which usually works together
with a special purpose software tool, thus avoiding the requirement for the initial
programming of this loader via an interface such as JTAG. However the majority of
processors do not offer this inbuilt option or may not support the peripheral or method as
required in a particular application, which is where the µTasker Serial Loader can find
practical and important use.

The µTasker Serial Loader can be configured for a number of firmware loading methods,
whereby one or more are usually possible to allow additional flexibility where needed.

1.1 SREC Loader

This technique allows new firmware to be loaded to the board in Motorola S-record format via
a UART – this doesn't require a special software to be installed on the PC but instead uses a
general purpose terminal emulator.

1.2 AN2295 Developer's Serial Bootloader

This mode allows compatible loading via UART based on Freescale/NXP's well known
developer's serial bootloader
[https://www.nxp.com/docs/en/application-note/AN2295.pdf], which works together with a
PC program that accepts an SREC file and communicates only the minimum amount of
information to allow the processor to be able to program the raw content to its program
Flash.

1.3 USB-MSD Device Operation

The µTasker Serial Loader includes USB MSD (mass storage device) device mode of
operation when the processor has a built-in USB device interface. The USB-MSD support
can be used parallel to, or instead of, other loading techniques.

USB-MSD mode is practical due to the fact that all PC operating systems include a standard
MSD host driver which allows such devices to be seen by the PC as an external disk drive.
This means that no special installation is required and drag-and-drop control makes its
operation very comfortable. Furthermore, the µTasker implementation retains the name and
date of the original file which can aid in version management.

USB-MSD device and host modes can be used together to achieve an OTG (On-The-Go)
type device. See USB-MSD Host mode below.

uTaskerSerialLoader.doc/1.13 3/59 25/04/21

https://www.nxp.com/docs/en/application-note/AN2295.pdf

www.uTasker.com µTasker – Serial Loader User’s Guide

1.4 USB-MSD Host Operation

The µTasker Serial Loader includes USB MSD (mass storage device) host mode of
operation when the processor has a built-in USB host interface. The USB-MSD support can
be used parallel to, or instead of, other loading techniques.

This allows the processor to mount a connected memory stick and update its own firmware if
the memory stick contains a valid file.

The operation of the USB-MSD Host loader is equivalent to SD-card loader (see the SD card
details below) operation once the memory stick has been mounted.

USB-MSD device and host modes can be used together to achieve an OTG (On-The-Go)
type device. See USB-MSD Device mode above.

1.5 USB-HID

This allows connection to a PC via USB and uploading firmware using a dedicated PC
program; options are “HIDloader.exe” from Freescale/NXP AN4764 or Freescale KBOOT
compatible loading. The USB-HID mode can be combined with USB-MSD as a composite
device for maximum flexibility.

Details for Freescale/NXP's KBOOT can be found at
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-
bootloader:KBOOT

1.6 KBOOT UART

Freescale/NXP KBOOT compatible loading via UART.

Details for Freescale/NXP's KBOOT can be found at
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-
bootloader:KBOOT

1.7 SD Card Operation

The µTasker Serial Loader has been extended to include SD card mode of operation which
can be used by all processors with SPI or SDIO and an SD card or µSD card slot for the
card. FAT16 and FAT32 file systems are supported, allowing a pre-defined file on the card to
be used as source for new embedded code.

The original firmware file can be optionally automatically deleted after a successful operation.

1.8 Ethernet Web Server

This option is available for boards with Ethernet and allows firmware uploads from a standard
Web browser.

uTaskerSerialLoader.doc/1.13 4/59 25/04/21

https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT

www.uTasker.com µTasker – Serial Loader User’s Guide

1.9 FTP Server

This option is available for boards with Ethernet and allows firmware uploads from and FTP
client.

1.10 Modbus Slave

This option is available over UART (ASCII or RTU) and allows a Modbus master to load new
firmware using a combination of commands and writes to a defined area of the Modbus
register map.

1.11 I2C Loader

This option is available for boards with I2C slave capability and allows firmware uploads from
an I2C master.

The only change required in the application software to be able to work with the µTasker
Serial Loader is the linking of its start address to match the application start address as
configured in the loader.

See appendix A for some target and compiler specific details.

The µTasker Serial Loader can also work together with applications from other projects. For
details about ensuring that the application can operate correctly see appendix B.

uTaskerSerialLoader.doc/1.13 5/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

µTasker Serial Loader – Major Components

uTaskerSerialLoader.doc/1.05 6/59 30/10/15

www.uTasker.com µTasker – Serial Loader User’s Guide

2. Programming the µTasker Serial Loader

The µTasker Serial Loader is available as pre-compiled object for loading to many typical
demo and evaluation boards. See the µTasker demo software web page to check whether
your board is supported: http://www.utasker.com/SW_Demos.html

The object file can be programmed using standard programming tools for the target.

Since the objects are defined for standard configurations there may be some restrictions (like
the UART that it uses and the UART configuration). By building the µTasker Serial Loader
(see following section) the user is free to define all settings to suit a particular hardware and
project.

This is valid for serial, USB-MSD, USB-HID, SD card and Ethernet Web Server modes.

uTaskerSerialLoader.doc/1.13 7/59 25/04/21

http://www.utasker.com/SW_Demos.html

www.uTasker.com µTasker – Serial Loader User’s Guide

3. Building the µTasker Serial Loader

Users of the µTasker project receive a serial loader project in the package which can be re-
configured as required and thus built to suit a particular target or project.

To build the project, simply open the serial loader project in the target development
environment, chose the desired target and build.

The following is a typical project path, in this case specifically for a Codewarrior project for an
M5223X target:

\
Applications\uTaskerSerialBoot\CodeWarrior_M5223X\uTaskerSerialBoot\
uTaskerSerialBoot_CW7.mcp

The build process should neither generate errors nor warnings and results in an output file
such as uTaskerSerialLoader.elf. (some targets will generate .bin, .hex etc.)

This file can then be programmed to the target.

The following section describes the use of the µTasker Serial Loader in its standard
configuration. In subsequent sections typical settings are discussed, which enable the
behaviour of the project to be changed to suit particular uses. Such details include the
selection of the UART to be used, its baud rate and the input(s) which may be used to force
the serial loader mode.

4. Using the µTasker Serial Loader - SREC

In order to be able to work with the µTasker Serial Loader it is necessary to connect a
terminal emulator to the UART on the target which is configured to perform the serial loader
function. It is advised to use TeraTermPro, a free terminal emulator which can be
downloaded from http://www.uTasker.com/software/teratermpro.zip (newer versions are
available at the Tera Trm Home Page - http://ttssh2.sourceforge.jp/index.html.en) This is an
excellent program which has proved to be very reliable on various Windows platforms,
including Vista, Windows 7 and Windows 8.1.

The terminal emulator must be programmed to match the setting of the µTasker Serial
Loader (eg. 115200 Baud, 8 Bit, 1 Stop bit, no parity, XON/XOFF flow control).

When the µTasker Serial Loader has been programmed to the target and no application
software is loaded it will always start and, when powered (or reset), display a screen similar
to the following:

uTasker Serial Loader
=====================
[0x00008080/0x000287ff]
me = mass erase
bc = blank check
dc = delete code
ld = start load
go = start application
>

uTaskerSerialLoader.doc/1.13 8/59 25/04/21

http://ttssh2.sourceforge.jp/index.html.en
http://www.uTasker.com/software/teratermpro.zip

www.uTasker.com µTasker – Serial Loader User’s Guide

This screen can be requested again by typing in a question mark (?).

There are several commands available – these commands are case-insensitive.

A command is terminated by the ENTER key and invalid input can be deleted by using the
back-space key. The terminal emulator may be configured to send a carriage return or a
carriage return + line feed.

me = mass erase

This is an optional command but is useful when working with a secured chip. A
secured chip will not allow debugging (to protect the content of FLASH from being
read) and can usually only be recovered by performing a mass erase of the FLASH.
This erase also deletes the µTasker Serial Loader, but un-secures the device. It
should only be used in special cases and requires the user to answer positively to
two questions when executed, to prevent its unintended execution.

bc = blank check

The blank check verifies that the complete application FLASH area is deleted. Only
when this is the case should a new load be performed; attempting to load to non-
deleted FLASH will cause a failure to be declared and the sequence must then be
restarted. If the FLASH is indeed blank the test will confirm this with the message

Checking Flash... EMPTY!

A non-blank FLASH will cause the following message to be displayed (the address
of the offending data may also be displayed):

Checking Flash... NOT BLANK!

dc = delete code

Delete the application area in the FLASH. This should be performed before a load is
started but is only necessary if there is already application code programmed, as
declared by the result of the blank check.

> dc
Delete code [y/n] ? >

Deleting code...successful

Note that the user must confirm the delete before it is executed.

uTaskerSerialLoader.doc/1.13 9/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

ld = start load

Starts the S-REC loading process. When this command is executed the µTasker
Serial Loader will wait for S-REC tokens to be received and save these to the
appropriate area of application FLASH. The following is a typical sequence:

uTasker Serial Loader
=====================
[0x00008080/0x000287ff]
me = mass erase
bc = blank check
dc = delete code
ld = start load
go = start application
> bc
Checking Flash... EMPTY!
> ld
Please start S-REC download:

Now the user should start the transfer of the appropriate file. Using TeraTermPro
this is very easy since it can be simply dragged to the terminal emulator window
(drag-and-drop) and then continues automatically.

Please start S-REC
download: ..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
...

Terminated - restarting...

During the download each received S-REC token is displayed as a dot. Once the
complete file has been received the message “Terminated – restarting...”
is displayed and the target board will reset. After the reset the loaded application will
run immediately.

uTaskerSerialLoader.doc/1.13 10/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Note that if a download is interrupted the mode can be quit by using CTRL + c.

In case of loading errors (invalid S-REC, or program code which is declared for
outside of the application space) the loading will be terminated with an error:

SREC-error!! (Ctrl+r to reset)

CTRL + r will reset the board so that the loading can be attempted again.

Note also that the application will not be recognised in this case due to the fact that
the first application bytes are always programmed as very last operation, once all
other bytes of the code have successfully been programmed. The µTasker Serial
Loader will recognise that there is no application loaded and start the serial loader
again if the first 8 bytes of application code do not exist.

go = start application

This command can be used to jump to the application code. This will be performed
whether there is application code loaded or not. It is useful when the serial loader
mode has been forced and the application code should however be started, as well
as for other test purposes.

Should the following, or similar, be seen during the loading process it means that the
address in the S-REC file is conflicting with the serial loader's own code area (signalled by
each !) and each S-REC line has been ignored:

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!........................
...

Possibly the normal ….. are seen after a number of !!!!!! as the S-REC addresses advance to
the valid application area.

In such a case it means that the application has not been configured to start at the correct
address location and needs to be corrected before continuing. Loaded code is also invalid
and so will not run – the serial loader should be forced to start again and the invalid code
deleted.

uTaskerSerialLoader.doc/1.13 11/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

A simplified state-event diagram of the serial loader operation is shown below for the start-up
loader decisions, the menu and download operations.

Serial Loader (Reset)

START

Yes
Force loader
input active

?

No

Yes

Application
present

?

No

Initialise UART

STATE_ACTIVE

Jump to Application

Serial Loader (Menu)

UART reception

Handle menu

STATE_ACTIVE

Yes

Delete application
area

Delete
?

No

Yes
Serial Download

?

No

STATE_ACTIVE

STATE_LOADING

STATE_ACTIVE

Serial Loader (Loading)

STATE_LOADING

SREC reception

YesNo

Yes

Save Data to Application
Area (Flash)

STATE_LOADING

First SREC
?

No Save First Application
Date Block (Flash)

Command Reset

Final SREC
?

Make a copy of the first
application data block

STATE_LOADING

START

uTaskerSerialLoader.doc/1.13 12/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Configuring the µTasker Serial Loader Project

The following settings control the project configuration.

Config.h

The main target is defined here as in all µTasker projects.
For SREC mode of operation the define SERIAL_INTERFACE must be enabled and the
defines KBOOT_LOADER and DEVELOPERS_LOADER must be disabled.

app_hw_xxxx.h (hardware specific configuration file)

The CPU speed (eg. PLL) is determined in this file as well as details of the hardware
target, such as package used.

Most hardware options (like timer, ADC, DMA etc.) have been removed since they
are not used by the serial loader. Whether the µTasker Serial Loader operates with
active watchdog can be configured with the defines
INIT_WATCHDOG_DISABLE() and WATCHDOG_DISABLE()
[INIT_WATCHDOG_DISABLE() can be used to configure an input to check whether
the watchdog should be enabled or disabled; WATCHDOG_DISABLE() configures
the decision check itself – set 1 to always disable the watchdog]. These settings are
equivalent to the settings in the main µTasker project.

INIT_WATCHDOG_LED() defines a port as output to be used to flash an LED at the
watchdog rate (5Hz) during the serial loader operation. The toggling of the port
(often connected to an LED for visualisation) is defined by
TOGGLE_WATCHDOG_LED(). [Note that the µTasker application flashes the LED at
2.5Hz and so the serial boot loader phase can be distinguished from the application
phase by the blink speed].

FORCE_BOOT() is a check to decide whether the serial loader mode should be
forced, whereby its configuration can be usually combined using the
INIT_WATCHDOG_DISABLE() define. This will allow the serial loader mode to be
entered even if there is an application program loaded, which may be important in
case of there being an application in memory which has a serious bug and
otherwise doesn’t allow the mode to be resumed.

UART buffer space:

#define TX_BUFFER_SIZE (512) // the size of RS232 input and
 output buffers

#define RX_BUFFER_SIZE (512)

Note that the output buffer size should be adequate to contain the complete menu
listing. The input buffer should be set to a value adequately buffering the UART
while FLASH is being programmed. If the buffer does become more that 80% full the
XON/XOFF protocol will ensure that the terminal emulator program stops sending
further data for a short time.

uTaskerSerialLoader.doc/1.13 13/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Loader.h

Contains the following configuration defines regarding UART characteristics and
application FLASH space:

#define MASS_ERASE // support a mass-erase command. This is used together
with a protected FLASH configuration. When the
FLASH is protected, downloads are still possible
but the debug interface is blocked. This allows a
commanded delete of the complete FLASH content
(including serial loader) to unblock the debug
interface

#define LOADER_UART 0 // the serial interface used by the serial loader

#define SERIAL_INTERFACE_MODE (CHAR_8 + NO_PARITY + ONE_STOP + USE_XON_OFF +
CHAR_MODE)
 // the UART configuration

#define SERIAL_SPEED SERIAL_BAUD_115200 // the Baud rate of the UART

#define UTASKER_APP_START (8 * 1024) // application starts at this address

#define UTASKER_APP_END (unsigned char *)(UTASKER_APP_START +
 ((256 – 8) * 1024)) // end of application space

The example above shows UART 0 being used at 115’200 Baud, 8 bits, no parity, one stop
but and XON/XOFF flow control. The µTasker Serial Loader ass reserved 8k space (the
actual space required depends on processor type and compiler) and the rest of a 256k
FLASH memory is allowed to be used by the application program. To match this example the
application should be linked to match the start address (8k) and can be up to 248k in size. In
some cases there may be additional parameters maintained in FLASH and so the application
space can be reduced to avoid these being deleted when the application code is erased.

When the SREC loader is used together with USB-MSD a file called “SOFTWARE.S19” is visible
on the hard drive after firmware has been loaded. This file has the size of the code but a
fixed time/date.

uTaskerSerialLoader.doc/1.13 14/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

5. Intermediate Buffer Required for Certain Processor Types

Not all processors enable programming of each individual line of SREC code as it is
received. The reasons may be restrictions concerning the smallest block size that can be
programmed to FLASH at each time or the fact that the programming time for the content of
the smallest block is too long for further SREC data to be received without UART reception
overrun taking place. In these instances an intermediate buffer is required.

When the processor requires the use of an intermediate buffer this will be automatically
activated in the project for this processor:

 #define INTERMEDIATE_PROG_BUFFER (16 * 1024)

The size of the buffer is also defined and is chosen to be suitable for the FLASH type and
memory available. Its job is to store the binary data (after extraction from each SREC line)
and assumes that the SREC being received is constructed in a linear fashion (addresses
increment continuously*). Once this buffer becomes full it will be programmed to FLASH.

Although the programming of a large block of data is an efficient method, the programming
time can be quite long. Usually interrupts are also disabled during programming and so no
further SREC lines can be received during this interval. For this reason the reception flow is
first halted by sending an XOFF character to the terminal, which is expected to be configured
for XON/XOFF flow control operation. Since terminal emulators may take a short time to
react to the XOFF character, a timer of 0.2s is used before the programming actually
commences; during this time any SREC reception data is still accepted by the UART receiver
but is held in the input buffer and not yet decoded into binary data.

The block programming time is not critical since data flow has been stopped. Once the block
has been successfully committed to memory the download continues after an XON character
is sent, informing the terminal emulator that it may continue with the date transfer.

During large SREC downloads the buffer programming may repeat several times. Once the
end of the SREC is detected the last buffer is committed, followed by the first data block, so
that the new application becomes ready for use after the following automatic reset.

The following shows a typical download with an intermediate buffer of about 16k in size.
When the XOFF is send before buffer programming starts a * is seen. When the XON is sent
to continue with the data transfer a second * is sent.

Please start S-REC download:...
...
...
...
...
...
...
...
...
...
..**.......
...
...

Terminated - restarting...

*Small ‘holes’ in the SREC can be tolerated; these are filled with 0xff in the intermediate buffer. If however larger
holes are detected (larger than 100 bytes) which occur towards the end of the intermediate buffer it may not be
possible to fill them. In this case the download will be aborted with the error message “SREC hole!! (Ctrl+r

uTaskerSerialLoader.doc/1.13 15/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

to reset)”. Either the value INTERMEDIATE_BUFFER_RESERVE needs to be increased to reserve more
space at the end of the buffer to cope for larger holes, or else the SREC file should be filled out with lines of 0xff
content rather than the spaces.

6. Preparing an Application and working with the Serial Loader

Any application can be loaded as long as its object file is in S-Record format. Its start
address (link address) must be set to correspond to the setting in the µTasker Serial Loader
(UTASKER_APP_START); the code at this address will be started as if it were at the normal
reset vector location.

If the serial loader is not forced (force input not activated) the application software will always
be started if it is programmed in FLASH; the first 8 bytes at its start location are checked to
decide whether to start it or not (the first 4 bytes are however programmed as last task during
loading and partly loaded programs will thus never be recognised as valid).

If new code is to be loaded there are two possibilities to enter the µTasker Serial Loader:
Either the defined input is used to force the mode after a reset or else the application can
delete itself (the first sector in the application area is adequate) and restart the board (usually
with help of the watchdog). Since there is subsequently no valid application detected by the
serial loader it will then enter the serial loader mode, allowing further downloads.

See appendix B for a list of points to consider to ensure application compatibility when
working with the boot loader. The application programmer may need to consider the following
points to ensure full compatibility with SREC loader:

1. If the application is started via the “go” command the UART and its pins will be
configured. Although this case is an exception, the application should not assume the
state of the peripheral at reset and may choose to reset these if appropriate.

See appendix A for target and compiler specific details.

uTaskerSerialLoader.doc/1.13 16/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

7. USB-MSD Device Boot Loader

The USB-MSD boot loader operation is available when the processor has an in-built USB
device interface. This mode is enabled by setting the define USB_INTERFACE in config.h
as well as USB_MSD_DEVICE_LOADER and can operate in parallel with other boot loader
modes – see the appropriate chapters for details concerning configuring other modes.

The default format of the firmware to be updated is binary. However the USB-MSD loader
also supports SREC and Intel HEX formats as options. To enable SREC operation the
define USB_MSD_ACCEPTS_SREC_FILES can be enable and to enable HEX operation
USB_MSD_ACCEPTS_HEX_FILES. The USB-MSD loader will then recognise the format that
it is receiving and perform the loading appropriately. If no binary mode support is required it
can also be disabled using USB_MSD_REJECTS_BINARY_FILES.

When the USB interface is enabled, the application file usb_device_loader.c is used to
control a USB Mass-Storage-Device class interface, which allows the PC host to see the
FLASH space as an external disk drive. The application code works together with
USB_drv.c and the HW USB driver to emulate the disk, allowing software to be loaded,
viewed and deleted. Optionally, loaded software can also be copied back to the PC host,
which can furthermore be password protected if this is not to be made available generally.

The USB-MSD interface emulates a FAT12 file system. The reason for choosing FAT12 is
the fact that it is the preferred FAT file system for disk space up to 2MByte; Windows XP will,
for example, not allow FAT32 operation on smaller disks than 32MByte and will also
automatically switch from FAT16 to FAT12 for disk sizes less than 2MByte. Although it would
be possible to work with FAT32 with most modern PC operating systems, the requirement for
compatibility with Windows XP meant that only FAT12 was realistic.

The operation of the USB-MSD boot loader is shown in two videos:

http://www.youtube.com/watch?v=H4TYM9jY2-g

The first video shows the basic operation, involving connecting to the PC host,
viewing loaded software, deleting existing software and uploading new software.

http://www.youtube.com/watch?v=e4oFBn_M5wo

The second video shows the optional password protection of the copy of loaded
software back to the PC host.

Note that the USB-MSD Device mode of operation can also be combined with USB-MSD Host
mode – see the USB-MSD Host Bootloader chapter for more details.

Since the actual use of the USB-MSD boot loader is fairly simple and fully illustrated in the
videos the following discussion will concentrate on SW details.

In Loader.h there are three defines that configure the USB-MSD boot loader operation:

#define ROOT_FILE_ENTRIES 4 // when USB MSD loader, this many directory
 entries are set to the start of FLASH -
 the application start is shifted by this
 amount x 32 bytes

#define ENABLE_READBACK // allow USB to transfer present application to PC

#define READ_PASSWORD "enable file read from the device by dragging this file
to the disk" // password with maximum length of 512 bytes

ROOT_FILE_ENTRIES defines the amount of space reserved at the start of the application
FLASH area for saving file entries belonging to the file used to load the software. A value of 4

uTaskerSerialLoader.doc/1.13 17/59 25/04/21

http://www.youtube.com/watch?v=e4oFBn_M5wo
http://www.youtube.com/watch?v=H4TYM9jY2-g

www.uTasker.com µTasker – Serial Loader User’s Guide

reserves 128 bytes of space (0x80) which is adequate to save the file details up to a long file
name of 39 bytes (based on the fact that LFN saves 13 uni-code characters in each file entry
space, with the final entry holding a DOS compatible 8:3 name). If the file name were to be
restricted to a short file name (8:3 format) a single file entry would be adequate, but this may
be too restrictive for general use. In case of the requirement for very long file names the
number of entries can be set higher and extra Flash space will be reserved (20 would hold
the longest LFN possible but would require 640 bytes to do so). By saving the file entry it is
possible to display the file details when the file is viewed – this makes for simple software
version management since the original file automatically has its creation date and time as
well as its size and software name.

In case the name of the uploaded software is too large to fit in the reserved file object area its
long file name is not used and instead only its short file name saved. This means that an
over-long file name will appear as something like UTASKE~1.BIN, although its size and
date/time information are still correct.

The root file entry also makes it simple to display the software file and its details since the
FAT emulation simply needs to recognise when the USB host is requesting the content of the
root directory (identified by the sector address that is being requested) and return the same
details that were saved as part of the software upload.

The size of the area reserved for root file entries also has a consequence on the linking
address of the application data. For example, assuming that the boot software requires about
16k of space and the application data can then start at the address 16k, the application link
address is in fact 16k plus the size of the root file entries:

#define UTASKER_APP_START (16 * 1024) // application starts at this address

#define ROOT_FILE_ENTRIES 4 // when USB MSD loader, this many directory entries
 are set to the start of FLASH - the application
 start is shifted by this amount x 32 bytes

The application jump address is in fact 0x4080 (0x4000 + 4x0x20) – this is the address at
which the application is linked to start at.

Note that the application jump address for the SREC loader alone would be 0x4000. The
jump address for the USB-MSD loader is therefore not the same at 0x4080. If, however, both
USB-MSD loader and SREC USB-MSD loader are used in parallel 0x4080 is also required
so that both are compatible.

ENABLE_READBACK activates support for copying back software content from the embedded
processor to the USB host. If this is not enabled the file will be visible but attempts to copy it
to the PC will fail with an error message suggesting the file is no longer available.

READ_PASSWORD is a password string of up to 512 bytes in length. When it is enabled and
ENABLE_READBACK is also active, it will be possible to copy software back to the PC host but its
content will be filled out with zeros by default. The reason for this behaviour is to prohibit the
software content to be retrieved by non-authorised users (often the processor will also be set
to secured mode so that the content can also not be retrieved via debug interfaces).

When an authorised user copies a password file (a simple text file containing the same string
as the password) to the disk drive (see the second video) uploads are then enabled until the
next reset of the device takes place. The authorised user can then copy the software stored
in the device’s FLASH back to the USB host with its same name, details and content.

uTaskerSerialLoader.doc/1.13 18/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Finally note that the USB-MSD boot loader works with binary files and not SRECs. This
means that the linker may need to be configured to generate binary output. In the case of
linkers generating MOTOROLA binary output this can be converted to RAW binary by using
the uTaskerConvert utility. The following shows it being used to generate raw binary from
a MOTOROLA binary input called uTasker_BM.bin:

uTaskerConvert uTasker_BM.bin raw.bin –b

uTaskerSerialLoader.doc/1.13 19/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

7.1 USB MSD Device Implementation Details

In order to work as a disk drive to a PC host the serial loader needs to behave as if it were
such a disk drive, although its main goal is to allow software to be written into its internal
flash memory. When the PC host connects to the serial loader via USB the serial loader
informs that it is a USB-MSD class and gives information so that the PC host believes that it
is a disk drive. The following main class commands are handled:

- SCSI command Inquiry (0x12). Each time this is requested by the PC host the serial
loader returns fixed details about it being a removable medium, with vendor “uTasker”
and product type “USB MSD Loader”

- SCSI command Read Format Capabilities (0x23). Each time this is requested by the
PC host the serial loader returns fixed details about the virtual disk status, size and
block length. The size is defined by DISK_SIZE, which can be up to 2Mbytes in size
using FAT12 format. The size is usually set to reflect the application flash size,
although larger size declaration is no problem.

- SCSI command Read Capacity (0x25). Each time this is requested by the PC host
the serial loader returns fixed details as to the total capacity of the disk; the number of
blocks and the block size.

- SCSI command Mode Sense (6) (0x1a). Each time this is requested by the PC host
the serial loader returns an error, unless it is a request for all pages in which case it
informs that it is a floppy disk without any write protection.

- SCSI command Request Sense (0x03). Each time this is requested by the PC host
the serial loader returns fixed details with the Sense Key set to “No sense”.

- SCSI command Test Unit Ready (0x00). Each time this is requested by the PC host
the serial loader returns an acknowledgement to inform that the disk is still
operational.

- SCSI command Read (10) (0x28) or Read (12) (0xa8). When the PC host reads data
from the disk the serial loader will mimic the contents of a formatted disk and return
one of the following types of data content:
- if the requested logical block address (LBA) is 0 it returns the content of a fixed
extended boot record containing information about where the boot sector is located.
- if the LBA corresponding to the location of the boot sector is requested (or its
backup location) [BOOT_SECTOR_LOCATION or (BOOT_SECTOR_LOCATION +
BACKUP_ROOT_SECTOR)] a fixed boot sector content will be returned. This contains
various details about the FAT and a volume label “UPLOAD_DISK” which the host PC
displays along with the disk.
- if the logical block address corresponds to the logical base address or is greater but
less that the virtual base address it means that the PC host is reading the root
directory of the disk. If there is no software loaded this causes an empty root directory
to be returned (containing just a volume label entry).
If software is loaded a file object corresponding to the file is returned – it will later be
seen that this file object was written by the host PC when the software file was saved
and the same entry is saved to the internal flash so that it can be returned.
- if the logical block address matches the start of the FAT area an empty FAT will be
returned (with initial default cluster entries) as if no data were present on the disk. In
case there is software loaded the FAT area sector read return FAT cluster information
as if the program were located in a contiguous series of sectors starting from the
virtual base address. This is important since the PC host reads the FAT area when
connecting and will declare the file as corrupted (not allowing deletes or copies to
take place correctly) if the FAT doesn’t not contain corresponding cluster details

uTaskerSerialLoader.doc/1.13 20/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

corresponding to the file’s content.
- if the logical block address is equal to or larger than the virtual base address it
causes zero filled sectors to be returned when there is no application software
present or it causes data from the internal flash to be returned as it if were located in
this area.
- all other logical block addresses that don’t match the previous ones will cause zero
filled sectors to be returned as would be the case from a deleted disk. This means
that the size of the disk that is simulated by the interface can be larger than the
physical size of the internal flash in the processor. Generally the disk size will be
declared somewhat larger to account for the additional space occupied by the FAT,
boot sectors and such.

- SCSI command Write (10) (0x2a) or Write (12) (0xaa). When the PC host writes data
to the disk the serial loader will mimic the contents of a formatted disk and write
content as follows:
- if the logical block address is equal to the logical base address the PC host is writing
to the root directory which takes place when deleting files or writing file information.
The content of such writes is saved in memory for future use (it will be saved to
internal flash). If there is application software present and the first file entry is deleted
or its file length is set to zero it triggers a delete of the application area in internal
flash.
- if the logical block address is equal to or higher that the virtual base address it
indicates that the PC host is writing file content and this content is written to internal
flash.
- if the writes are to other areas or to a logical block address above the highest
address accepted by the application area it is ignored but still acknowledged so that
the PC host doesn’t see an error.

20
48

 s
ec

to
rs

 in
 t

ot
al

Virtual Disk (1MBytes)

FAT12 starts at 3
and occupies
7 sectors

LBA 0 Extended Boot Record
LBA 1

LBA 10

Boot sector
512 bytes
per sector

Logical Base Address starts at 0x0a

LBA 11

LBA 43 Virtual Base Address starts at 0x2b

LBA 2
LBA 3
LBA 4
LBA 5
LBA 6
LBA 7
LBA 8
LBA 9
LBA 10

E
ac

h
cl

us
te

r
is

 1
 s

ec
to

r
in

 s
iz

e

LBA 2047

FAT12 root area

File cluster area

Processor's internal
Flash

Boot Loader

0x00000000

0x00008000 Software File entry
0x00008080

Application
software
area

Optional spare space
which doesn't
accept application
software

Boot sector backup

uTaskerSerialLoader.doc/1.13 21/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

This diagram illustrates the relationship between the physical flash memory in the processor
and the virtual disk drive that is emulated by the USB-MSD loader interface (flash addresses
may vary). As can be seen, the first file object (representing the software file written by the
host) is stored in the processor’s memory just before the start of the application code so that
it can be returned when the host reads the root directory of the emulated disk – this is then
displayed as its original file name, with time, date and size. The size information is also used
by the disk emulator to correctly construct the FAT area entries.

Typically the PC host will write the file information before actually writing the file content and
so it is not possible to use the write of a file size to the file object to detect when the file itself
has been fully written. Instead a re-triggerable mono-stable software timer is used to monitor
writes to the file content area and when there has been no further write for a period of 3s it is
assumed that the file transfer has terminated and the file object entry is also committed to
flash (along with the first block of program) so that the new application is ready to be started.
The board will reset at this point and start executing the new code.

Note that the existence of code at the first address in the application area is used to identify
whether there is valid software available. The first application block is not written immediately
when received but is buffered and only committed as final operation when the complete file
has been received. This avoids an interrupted transfer from being understood as valid
software in case the file transfer would not complete due to a power failure or other cause –
this is the same strategy as used by the UART loader.

7.2Software Password Protection

When a host write is performed to file cluster area although there is already software present
it indicates that a file is being copied with a different name to the software file presently
stored. This is interpreted as a “password file” write and the content is not stored. The
content is however compared with a local password which can temporarily unlock code
protection.

If password protection is enabled [READ_PASSWORD] reading a file back from the embedded
system without the password being first entered results in the file content being returned as
zero filled sectors. Once the password has been entered (by copying the file with the
password as content) it will allow the file’s data to be read back. The password entry remains
valid until the next reset.

The capability of reading back the software content to the host is enabled by
ENABLE_READBACK.

7.3Software Overwriting

When a new software version is to be loaded which has a different file name it is necessary
to first delete the existing software. If however the software to be loaded has the same name
(with possibly different time/date, content and size) it can be copied to the disk without first
deleting the original application software. This results in the PC asking first whether the file is
to be replaced and the replace actual is equivalent to a delete followed by a write which may
however be a more convenient in some cases.

uTaskerSerialLoader.doc/1.13 22/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

7.4Compatibility and Disclaimer

As PC operating systems develop and new upgrades and service packs become available it
has been found that the interaction with disk drives has changed. For example, from
Windows 8.1 the operating system writes hidden system volumes to newly connected drives
which needs to be suitably handled by the FAT emulation so that it doesn't mistake these
writes as parts of firmware upload data and also needs to be able to handle the fact that the
file system layout becomes un-predicatable. Such changes have been made to ensure such
compatibility with the most recent Windows OS without requiring Windows settings to be
changed.

Similar behaviour is found with MAC and Linux OS versions and it can't be excluded that this
behaviour will not change at any time after a new PC software update is performed.

For this reason it has been decided to maintain the µTasker Serial Loader for correct
operation with Windows. This means that the USB-MSD mode of operation will be further
developed if and when such need is detected, but it can't be guaranteed that a particular
version which fulfils this aim today will remain fully compatible during its lifetime after
installation.

Due to the diversity of other PC operating systems the correct operation with other systems
apart from Windows is not guaranteed although attempts will be made to ensure that major
systems are basically operational.

Therefore, the following maintenance goals and disclaimers are valid for use of the USB-
MSD loader:

1. The correct operation with Windows XP, Vista, Windows 7, Windows 8 as well as
enhancements required due to service pack updates is a part of service agreements
for users of the µTasker Serial Loader

2. Use of the µTasker Serial Loader in non-Windows environments is not guaranteed
or maintained, although efforts will be made to achieve a good level of compatibility

3. Although efforts will be made to solve new compatibility issues if and when they arise,
no responsibility is accepted for operational difficulties due to potential future changes
in PC behaviour

uTaskerSerialLoader.doc/1.13 23/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

8. USB-MSD Host Bootloader

Processors and boards supporting USB host can make use of the USB-MSD Host
Bootloader mode. This allows loading firmware from an inserted memory stick. The operation
is equivalent to the SD Card Bootloader which is described later in this document once the
inserted memory stick has been enumerated and subsequently mounted.

In order to activate this mode the following defines are enabled in config.h:

#define USB_INTERFACE

#define USB_MSD_HOST_LOADER

The result is that the USB host loader task is enabled (usb_host_loader.c) which configures
the USB interface for host mode of operation and implements the USB-MSD host control.
Once the memory stick has been enumerated and its detaisl are known the rest of the
operation is performed by the disk loader task (disk_loader.c) which is also used by the SD
card loader mode. See the SD card description for the subsequent operating details.

It is possible to enable both USB-MSD Host and USB-MSD Device modes at the same time.
This means that both USB_MSD_DEVICE_LOADER and USB_MSD_HOST_LOADER are
enabled together. In this configuration the USB-MSD Device mode is initially configured and
the USB-MSD device task waits for 0.5s to see whether there is a USB host connected that
performs enumeration. Should this be the case it remains in the USB-MSD Device loader
mode so that new firmware can be loaded using the method explained in the USB-MSD
Device Loader chapter.

If, after 0.5s, no USB host has been detected the USB-MSD Host task is activated, which re-
configures the USB interface to host mode and attempts to enumerate a connected memory
stick (after applying USB power to the bus).

uTaskerSerialLoader.doc/1.13 24/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

When the UART is enabled the USB-MSD Host activity can be monitored at its debug output.
The following shows a typical session where a memory stick is mounted and a file found on it
is used to update the firmware:

 uTasker Serial Loader
=======================
[0x00008080/0x00025fff]
bc = blank check
dc = delete code
ld = start load
go = start application
> Switching to host mode
USB FS device detected
USB device information ready:
USB2.0 device with 64 byte pipe
Vendor/Product = 0x0781/0x5406
Manufacturer = "SanDisk"
Product = "U3 Cruzer Micro"
Serial Number = "43172009D7514E7"

Bus-powered device (max. 100mA) with 1 interface(s)
Mass Storage Class : Sub-class = 0x06 interface protocol = 0x50
Endpoints:
1 = BULK IN with size 64
2 = BULK OUT with size 64
Enumerated (1)
LUN = 2
UFI INQUIRY -> Status transport - Passed
UFI REQUEST SENSE -> Status transport - Passed
UFI FORMAT CAP. -> Stall on EP-1
EP-1 cleared
Status transport - Failed
UFI FORMAT CAP. -> Stall on EP-1
EP-1 cleared
Status transport - Failed
UFI FORMAT CAP. -> Status transport - Passed
UFI READ CAP. -> Status transport - Passed
Mem-Stick mounting...
***Disk E mounted
Mem-Stick present
**File valid
**Software Updated

It is to be noted that some memory sticks may take a short time to become ready and return
USB stalls when requests are made before it can respond. Some stalls and Status transport
failures are thus normal for some memory sticks, while others may just not respond until they
are ready to do so (can be one or two seconds but varies greatly between device model and
manufacturer).

uTaskerSerialLoader.doc/1.13 25/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

9. USB-HID

Freescale/NXP device users can make use of Freescale/NXP's KBOOT programming utility
to load code via USB using USB-HID (human interface device)

In order to activate this mode the following defines are enabled in config.h:

#define USB_INTERFACE

#define HID_LOADER

#define KBOOT_HID_LOADER

This selects the USB interface, the USB-HID mode and specifies that its protocol is that used
by KBOOT.

The utilisation is compatible with Freescale/NXP's KBOOT implementation and so all further
information about its utilisation can be found at https://www.nxp.com/support/developer-
resources/reference-designs/kinetis-bootloader:KBOOT

If the define KBOOT_HID_LOADER is removed the USB-HID protocol used will be compatible with
an older Freescale/NXP loader called “HIDloader.exe” and described in the
Freescale/NXP application note AN4764.
http://cache.freescale.com/files/32bit/doc/app_note/AN4764.pdf

The USB-HID mode can be used in parallel with USB-MSD, in which case a composite
device is used.

When the USB-HID KBOOT loader is used together with USB-MSD a file called
“KBOOTUSB.BIN” is visible on the hard drive after firmware has been loaded. This file has the
size of the code but a fixed time/date.

uTaskerSerialLoader.doc/1.13 26/59 25/04/21

http://cache.freescale.com/files/32bit/doc/app_note/AN4764.pdf
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT

www.uTasker.com µTasker – Serial Loader User’s Guide

10. KBOOT UART

Freescale/NXP device users can make use of Freescale/NXP's KBOOT programming utility
to load code via UART.

In order to activate this mode the following defines are enabled in config.h

#define SERIAL_INTERFACE

#define KBOOT_LOADER

This selects the UART interface and specifies that the protocol is that used by KBOOT. This
mode overrides the SREC mode of operation.

The utilisation is compatible with Freescale/NXP's KBOOT implementation and so all further
information about its utilisation can be found at https://www.nxp.com/support/developer-
resources/reference-designs/kinetis-bootloader:KBOOT

When the serial KBOOT loader is used together with USB-MSD a file called “ KBOOTSER.BIN “
is visible on the hard drive after firmware has been loaded. This file has the size of the code
but a fixed time/date.

uTaskerSerialLoader.doc/1.13 27/59 25/04/21

https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT
https://www.nxp.com/support/developer-resources/reference-designs/kinetis-bootloader:KBOOT

www.uTasker.com µTasker – Serial Loader User’s Guide

11. AN2295 Developer's Serial Bootloader

Freescale device users can make use of Freescale/NXP's AN2295 Developer's Serial
Bootloader programming utility to load code via UART.

In order to activate this mode the following defines are enabled in config.h

#define SERIAL_INTERFACE

#define DEVELOPERS_LOADER

Optionally, the programmed code can be read back when the define

 #define DEVELOPERS_LOADER_READ

is enabled.

The communication is optionally secured by CRCs when the define

 #define DEVELOPERS_LOADER_CRC

is enabled.

This selects the UART interface and specifies that the protocol is that used by the application
note's PC software. This mode overrides the SREC and KBOOT modes of operation.

The utilisation is compatible with Freescale/NXP's AN2295 Kinetis (version 8)
implementation and so all further information about its utilisation can be found at
https://www.nxp.com/docs/en/application-note/AN2295.pdf

When the AN2295 Developer's Serial Bootloader is used together with USB-MSD a file
called “ DEVELOPE .S19 “ is visible on the hard drive after firmware has been loaded. This file
has the size of the code but a fixed time/date.

uTaskerSerialLoader.doc/1.13 28/59 25/04/21

https://www.nxp.com/docs/en/application-note/AN2295.pdf

www.uTasker.com µTasker – Serial Loader User’s Guide

12. SD-Card Loader

The SD-Card boot loader operation is available when the processor has either SPI or SDIO
interfaces and the board has an SD card or µSD card socket. FAT16 and/or FAT32 formatted
cards are supported, based on the µtFAT (FAT compatible module in the µTasker project).

This mode is enabled by setting the define SDCARD_SUPPORT in config.h and can
operate in parallel with other loader modes. Since the SD card loader always checks the SD
card for new software it may be necessary to adjust the logic when used together with
methods that check an input to force boot loader mode and otherwise immediately jump to a
loaded application. Such logic can be controlled by specific code added to
fnUserHWInit() in Loader.c, chosen according to the projects requirements and loader
priorities.

Default operation is in SPI mode, which is possible with most processors. The SPI
connection details are set in the file app_hw_xxxx.h (depending on processor family used).
If the processor incorporates an SDIO/SDHC controller, this can be enabled with #define
SD_CONTROLLER_AVAILABLE in the hardware specific file. Since the boot loader usually
only needs to be able to read from the SD card and not write, or format it, a minimum
configuration of the µtFAT is possible by using the following example configuration in
config.h:

#ifdef SDCARD_SUPPORT
 #define SD_CARD_RETRY_INTERVAL 2 // attempt SD card init. at 2s intervals
 #define UT_DIRECTORIES_AVAILABLE 1 // this many directories objects are
 available for allocation
 //#define UTMANAGED_FILE_COUNT 10 // no managed files required
 //#define UTFAT_LFN_READ // no long file name read support
 #define STR_EQUIV_ON // ensure that this routine is available
 #ifdef UTFAT_LFN_READ
 #define MAX_UTFAT_FILE_NAME (100) // the max. file name length supported
 #endif
 //#define UTFAT_WRITE // disable write functions
 //#define UTFAT16 // support only FAT32 (not FAT16)
 #define UTFAT_RETURN_FILE_CREATION_TIME // when a file is opened, its creation
 time and date is returned in the file object
 #define UTFAT_DISABLE_DEBUG_OUT // disable all debug output from utFAT
#endif

The SD card loader always first checks to see whether there is an SD card available. If this is
not the case it will jump to the existing application (if present). The following steps are the
main ones that take place when there is a card present:

 As long as the SD card could be mounted, a software file at a specific location and
with a specific name is checked for. The name and location is defined in loader.h
with default:

#define NEW_SOFTWARE_FILE "software.bin"

 If the file is found, the content is compared with the loaded application

 If no file is found or if the content is the same as the present application the
application is started

 If the file is different it causes the loader to overwrite the present application with it
and then starts it

uTaskerSerialLoader.doc/1.13 29/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

If preferred, an option to use wild-card name matching can be enabled with the define
WILDCARD_FILES.

In this case #define NEW_SOFTWARE_FILE "software*.bin"
allows the software to be used in conjunction with a version number, whereby the first
(usually only) matching file is loaded.

The file is saved with a small header containing CRC and a secret key to ensure that foreign
files or corrupted files don't get loaded (by mistake or by malicious intentions). The header is
added to the binary output of the application build by running the utility uTaskerConvert; this
format is the same as used by the “Bare-Minimum” loader as discussed in
http://www.utasker.com/docs/uTasker/uTasker_BM_Loader.pdf. An example of converting
the application software is:

uTaskerConvert.exe uTaskerV1.4_BM.bin software.bin -0x1234 –
a748b6531124

The matching configuration in Loader.h would then be:

 #define NEW_SOFTWARE_FILE "software.bin"

 #define VALID_VERSION_MAGIC_NUMBER 0x1234
 #define _SECRET_KEY {0xa7, 0x48, 0xb6, 0x53, 0x11, 0x24}

Using the option ENCRYPTED_CARD_CONTENT requires the firmware to be additionally
encrypted, whereby the serial loader decrypts it when copying the firmware to the application
Flash. An example of encrypting the software, also described in detail in the “Bare-Minimum”
loader document, is :
uTaskerConvert.exe uTaskerV1.4_BM.bin software.bin -0x1235
-b748b6531124 -ff25a788f2e681338777 -afe1 -c298

The matching configuration in Loader.h would then be:

 #define NEW_SOFTWARE_FILE "sd_card_enc.bin"
 #define VALID_VERSION_MAGIC_NUMBER 0x1235
 #define _SECRET_KEY {0xb7, 0x48, 0xb6, 0x53, 0x11, 0x24}
 static const unsigned char ucDecrypt[] =
 {0xff, 0x25, 0xa7, 0x88, 0xf2, 0xe6, 0x81, 0x33, 0x87, 0x77};
 // must be even in length (dividable by unsigned short)
 #define KEY_PRIME 0xafe1 // never set to 0
 #define CODE_OFFSET 0xc298 // ensure that this value
 is a multiple of the smallest flash
 programming entity size
 (divisible by 8 is suitable for all
 Kinetis parts)

If the software file on the disk should be automatically deleted after successful loading, this
can be enabled with the define DELETE_SDCARD_FILE_AFTER_UPDATE. Since the SD card needs
to be written to in order to delete the file, the utFAT option UTFAT_WRITE needs also to be
enabled in this case, which also increases the size of the serial loader due to the additional
functions involved.

The detailed SD card operation is depicted in the following state-event diagrams (not
showing options of decryption of encrypted content nor deleting SD card content on
completion):

uTaskerSerialLoader.doc/1.13 30/59 25/04/21

http://www.utasker.com/docs/uTasker/uTasker_BM_Loader.pdf

www.uTasker.com µTasker – Serial Loader User’s Guide

SD Card Loader (Reset)

START

Start detection and
mounting of SD card

STATE_ACTIVE

T_CHECK_CARD

Start 1s timer

Yes

No

Yes

Maximum
wait expired and

application
present?

No

STATE_ACTIVE

T_CHECK_CARD

SC card
detected ?

T_CHECK_CARD

Start 1s timer

STATE_ACTIVE

Jump to Application
(if present)

Yes

No

SD card
formatted ?

Open the software file
on the SD card

Yes

No

File exists and
content valid ?

STATE_CHECKING

SD Card Loader (Checking
software file)

Read a buffer of data
from the file on the SD card
and calculate content CRC.
Compare with content in
Flash

Yes

No

End of
file reached?

E_DO_NEXT

Generate event

STATE_CHECK_
SECRET_KEY

T_GO_TO_APP

Jump to Application
(if present)

T_GO_TO_APP

Start 1s timer

STATE_ACTIVE

uTaskerSerialLoader.doc/1.13 31/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

E_DO_NEXT

SD Card Loader (Checking
software file content)STATE_CHECKING

STATE_CHECKING

Yes

No

End of
file reached?

STATE_CHECK_
SECRET_KEY

Read a buffer of data
from the file on the SD card
and calculate content CRC.
Compare with content in
Flash

E_DO_NEXT

Generate event

STATE_CHECK_
SECRET_KEY

E_DO_NEXT

Complete calculation
of CRC with secret key

Yes

No

Content validated ?

STATE_ACTIVE

T_GO_TO_APP

Start 1s timer

Yes

NoIs the Flash
content

identical?

Delete the application
area in Flash

E_DO_NEXT

Generate event

STATE_DELETING_
FLASH

STATE_DELETING_
FLASH

E_DO_NEXT

Seek back to the start of
the software file.
Read and temporarily store
a flash row size of data

STATE_
PROGRAMMING

Read a buffer of data
from the file on the SD card
and write it to Flash

E_DO_NEXT

Generate event

Yes

No

End of
file reached?

STATE_
PROGRAMMING

E_DO_NEXT

STATE_VERIFYING

E_DO_NEXT

Read a buffer of data
from the Flash and calculate
content CRC

Yes

No

End of
application
 reached?

E_DO_NEXT

Generate event

STATE_VERIFYING

Add the secret key to the
CRC calculation

Yes

No

Is the Flash
content valid?

Write first Flash row buffer
to Flash

E_DO_NEXT

Generate event

STATE_VERIFYING

SD Card Loader (Programming
and verifying)

T_CHECK_CARD

Start 4s timer

STATE_ACTIVE

T_GO_TO_APP

Start 1s timer

STATE_ACTIVE

uTaskerSerialLoader.doc/1.13 32/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

At various points in the SD card loading process defines are included that can be used to
display its present state. This allows an indication of the progress to be displayed, for
example on LED outputs. In the case of the Kinetis K40 KwikStik project the progress is
displayed on its LCD display by assigning these as follows:

#define _DISPLAY_SD_CARD_NOT_PRESENT() SET_SLCD(39TO36, QS_39TO36_POUNCE_LOGO)
#define _DISPLAY_SD_CARD_NOT_FORMATTED() SET_SLCD(3TO0, QS_3TO0_JLINK_SYMBOL)
#define _DISPLAY_NO_FILE() SET_SLCD(3TO0, QS_3TO0_CONNECTION_SYMBOL)
#define _DISPLAY_SD_CARD_PRESENT() SET_SLCD(3TO0, QS_3TO0_BATTERY_SYMBOL)
#define _DISPLAY_VALID_CONTENT() SET_SLCD(39TO36, QS_39TO36_BATTERY_CHARGE_1)
#define _DISPLAY_INVALID_CONTENT() SET_SLCD(3TO0, QS_3TO0_BATTERY_CHARGE_3)
#define _DISPLAY_SW_OK() SET_SLCD(39TO36, QS_39TO36_BATTERY_CHARGE_2); \
 SET_SLCD(3TO0, QS_3TO0_BATTERY_CHARGE_3)
#define _DISPLAY_ERROR() SET_SLCD(3TO0, QS_3TO0_CLOCK_SYMBOL)

This causes the following symbols to be displayed, depending on the SD card loading state
and progress. The exact output methods are however no the subject of this document and
the SLCD can be found at http://www.utasker.com/docs/uTasker/uTasker_SLCD.pdf

SD card not present

_DISPLAY_SD_CARD_NOT_PRESENT()

SD card present but not formatted

_DISPLAY_SD_CARD_NOT_FORMATTED()

SD card is present

_DISPLAY_SD_CARD_PRESENT()

SD card is present but has no software file on it

_DISPLAY_NO_FILE()

SD card is present but has an invalid software file

_DISPLAY_INVALID_CONTENT()

SD card is present and it has a valid software file

_DISPLAY_VALID_CONTENT()

SD card is present and it has a valid software file which matches
the application in flash (either initial state or after updating the
flash content)

_DISPLAY_SW_OK()

uTaskerSerialLoader.doc/1.13 33/59 25/04/21

http://www.utasker.com/docs/uTasker/uTasker_SLCD.pdf

www.uTasker.com µTasker – Serial Loader User’s Guide

Software update was performed but the new flash content has a
mismatch (this should normally never occur but it would lead to a
new programming attempt after a short delay)

_DISPLAY_ERROR()

Note that the define FORCE_BOOT() in fnUserHWInit() in Loader.c controls whether an
existing application software is immediately started without passing through the SD card
loader. If the SD card socket has a card detect switch integrated into it, it can be useful to
use this to force the SD card loader mode when a card is inserted and then allow the
application to be immediately started when no SD card is in the socket.

The Kinetis KwikStik, for example, can do this by defining the check as

#define FORCE_BOOT() (_READ_PORT_MASK(E, PORTE_BIT27) == 0)

whereby the input is configured previously together with other such configurations by

#define INIT_WATCHDOG_DISABLE() _CONFIG_PORT_INPUT_FAST_HIGH(E,
(PORTE_BIT27), 0)

When the SD card loader is used together with USB-MSD a file called “SOFTWARE.BIN” is
visible on the hard drive after firmware has been loaded. This file has the size of the code
and also the date/time from the original file on the SD card.

 12.1 Loading Multiple Files and Controlling the location of the Firmware
File(s)

In some situations it may be required to allow the serial loader to not only update the
processor's firmware from an SD card but also to allow the same method to be used to
update additional data to other locations; an example is when the processor is responsible
for maintaining the firmware of sub-modules, such as FPGAs, that may need to be
programmed from an image in the processor's memory space each time the system starts.

To accomodate such requirements the following options can be used:

#define SDCARD_FILE_COUNT 3 // 3 different files are to be loaded from the SD card

The default setting (valid also when not defined) is a value of 1, which means that the
operation follows the procedure as already discussed in this chapter. However when multiple
files are specified the serial loader implements this number of loaders corresponding to the
SD card flow chart and each operating in parallel to update these multiple files.

uTaskerSerialLoader.doc/1.13 34/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

The location of the firmware file(s) can be controlled using the option:

#define VARIABLE_FW_DIRECTORY // allow the firmware directory to be configurable
(rather than being fixed in the root directory)

whereby the directory locations and the file names are specified by (for example):

#define FIRMWARE_DISK_LOCATION "NewCode/Processor"
#define FIRMWARE2_DISK_LOCATION "NewCode/FPGA"
#define FIRMWARE3_DISK_LOCATION "NewCode/DSP"

#define NEW_SOFTWARE_FILE "software*.bin"
#define NEW_SOFTWARE2_FILE "fpga*.bin"
#define NEW_SOFTWARE3_FILE "dsp*.bin"

Since the destination and maximum size of each of the files to be loaded will be different
additional defines control these details (for example):

#define FIRMWARE2_DESTINATION_ADDRESS (SIZE_OF_FLASH)
#define FIRMWARE3_DESTINATION_ADDRESS (SIZE_OF_FLASH + SPI_DATA_FLASH_0_SIZE)

whereby the destination address of the first file (the first file is always the processor firmware)
is already specified by _UTASKER_APP_START_.

Similarly the maximum file sizes are specified as

#define FIRMWARE2_MAX_SIZE (64 * 1024)
#define FIRMWARE3_MAX_SIZE (64 * 1024)

wherey the maximum size of the first file (the first file is always the processor firmware) is
already specified by UTASKER_APP_END.

Each of the files that are located on the SD card need to have been converted to a file with
upload header and all use the same authentication and security settings.

For clarity this configuration is show in graphical form on the next page showing a practical
scenario where the processor firmware is updated from the SD card to the processor's
internal Flash. In addition two further firmware versions are updated to two different regions
of an external SPI flash (viewed as following the internal processor Flash in the virtual
memory map). It is assumed that the processor is responsible for loading or updating code
from this SPI Flash storage to accompanying devices (an FPGA and a DSP) or that these
further devices have direct access to the new code and can then load or update themselves
form the new source.

Such a configuration makes upgrading such a set of firmware versions simple to manage
and to perform.

Although not detailed here the µTasker Flash drivers can be simply configured to include
support for various SPI connected Flash devices, after which the control of the memory
regions used is fully automated based on the firmware destination addresses defined – it is
even possible to upload new firmware to an area straddling Flash memory types (eg. The
data starts in internal flash and ends in external SPI flash), although such layouts would
probably be rare.

uTaskerSerialLoader.doc/1.13 35/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

uTaskerSerialLoader.doc/1.13 36/59 25/04/21

#define VARIABLE_FW_DIRECTORY
#define SDCARD_FILE_COUNT 3

#define FIRMWARE_DISK_LOCATION "NewCode/Processor"
#define FIRMWARE2_DISK_LOCATION "NewCode/FPGA"
#define FIRMWARE3_DISK_LOCATION "NewCode/DSP"

#define NEW_SOFTWARE_FILE "software*.bin"
#define NEW_SOFTWARE2_FILE "fpga*.bin"
#define NEW_SOFTWARE3_FILE "dsp*.bin"

dsp_V3.21.bin

fpga_V2.3.bin

software_V1.6.bin

Internal Flash

SPI Flash

_UTASKER_APP_START_

UTASKER_APP_END

FIRMWARE2_DESTINATION_ADDRESS

 FIRMWARE2_MAX_SIZE

FIRMWARE3_DESTINATION_ADDRESS

 FIRMWARE3_MAX_SIZE

Processor
firmware

FPGA
firmware

DSP
firmware

www.uTasker.com µTasker – Serial Loader User’s Guide

13. Ethernet Web Server

Devices with Ethernet can activate a web server dedicated for firmware uploading by
enabling

 #define ETH_INTERFACE

and
 #define USE_HTTP
in config.h

(The web server method can be used in parallel with the FTP method explained in the
following chapter)

This sets the board on a fixed IP address of 192.168.0.125 and a fixed MAC address of 00-
00-00-00-00-05. [Teensy 4.1 users can enable #define MAC_FROM_USER_REG to use the MAC
address that is pre-programmed by the manufacturer in the eFUSEs of their boards].

These values can be modified in the code as required or takes from alternative storage
locations as appropriate for the board and project in question.

By browsing to this IP address using any browser of choice the following page is returned –
note that the page is controlled by embedded HTML and can thus be modified in appearance
to suit a project/product.

This screen shot shows that there is application software already loaded ad so the first step
will be to delete this software so that new firmware can be uploaded. This is performed by
entering the erase password and then clicking on the Erase-Application button.

The default application erase password is

p12X-k3ve2B1O2Ba
and can be modified in the code to suit the project in question.

The next screen shot shows that the application has been deleted and the Upload button is
no longer disabled (compare with the previous screen-shot).

uTaskerSerialLoader.doc/1.13 37/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

The file to be uploaded is selected and then the Upload button is pressed in order to perform
the transfer, after which the screen will show

which indicates that the file was successfully accepted and programmed to Flash. The new
application software will now start.

The Mass-Erase button allows the complete flash (including the boot loader) to be deleted.
This can be useful in case the device has been set to a protected mode which doesn't accept
debugger contact because a mass erase will generally also reset protection to that the
device can be accessed again. The button is neither needed nor used for normal firmware
upload activity.

The default mass-erase password is

mMm122-aHHHQq1x8
and can be modified in the code to suit the project in question.

The board running the Ethernet loader can also be pinged on its IP address.

If the option SUPPORT_HTTP_POST_FILE_NAME is enabled a file with the name of the
uploaded data is visible on the hard drive after firmware has been loaded (when used
together with USB-MSD). This file has the name and size of the code but a fixed time/data
due to the fact that HTTP post doesn't preserve the time/date of the uploaded file.

If the options SUPPORT_HTTP_POST_FILE_NAME is not enabled a file called “WEB_LOAD.BIN”
is visible on the hard drive after firmware has been loaded. This file has the size of the code
but a fixed time/date.

uTaskerSerialLoader.doc/1.13 38/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

14. FTP Server

Devices with Ethernet and with a two step loader technique (see the “Bare-Minimum” Loader
https://www.utasker.com/docs/uTasker/uTasker_BM_Loader.pdf) can activate an FTP server
by enabling

 #define ETH_INTERFACE

and
 #define USE_FTP
 in config.h

(The FTP server method can be used in parallel with the web server method explained in the
previous chapter)

This sets the board on a fixed IP address of 192.168.0.125 and a fixed MAC address of 00-
00-00-00-00-05. [Teensy 4.1 users can enable #define MAC_FROM_USER_REG to use the MAC
address that is pre-programmed by the manufacturer in the eFUSEs of their boards].

These values can be modified in the code as required or takes from alternative storage
locations as appropriate for the board and project in question.

The FTP server uses the µFileSystem as internal file system to save received data to,
whereby a certain file location is defined to be that used by new applications (or new serial
loaders if the concept supports serial loader updating too). The new application is required to
be prepared with an upload header (see details in the SD card loader chapter) and can be
optionally encrypted.

The following shows connecting and loading a file using the DOS FTP client in a command
shell to a Teensy 4.1 (as reference) whereby the FTP server is in anonymous mode requiring
no user/password login (simple hit the enter key in each case):

ftp 192.168.1.125
Connected to 192.168.1.125.
220 Welcome i.MX RT FTP.
500 What?.
User (192.168.1.125:(none)):
331 Enter pass.
Password:
230 Log OK.
ftp>
ftp> dir
200 OK.
150 Data.
-r Empty
226 OK.
ftp: 13 bytes received in 0.04Seconds 0.33Kbytes/sec.
ftp> put uTaskerV1.4.15_AES256_TEENSY_4_1.bin z.bin
200 OK.
150 Data.
226 OK.
ftp: 93320 bytes sent in 0.20Seconds 461.98Kbytes/sec.
ftp> dir
200 OK.
150 Data.
-rwxrwxrwx 1 502 502 93320 Feb 9 2020 z.BIN
226 OK.
ftp: 48 bytes received in 0.05Seconds 0.98Kbytes/sec.
ftp>

uTaskerSerialLoader.doc/1.13 39/59 25/04/21

https://www.utasker.com/docs/uTasker/uTasker_BM_Loader.pdf

www.uTasker.com µTasker – Serial Loader User’s Guide

Notice that in this case the new firmware is renamed/saved to “z.bin” which is the required
location in this board's case.

Once the upload has terminated successfully the board restarts and the “Bare-Minimum”
loader completes the process by copying the intermediate file to its final location.

The board running the FTP loader can also be pinged on its IP address.

When used together with USB-MSD a file called “OTA_FW_.BIN” is visible on the hard drive
after firmware has been loaded. This file has the size of the code but a fixed time/date.

uTaskerSerialLoader.doc/1.13 40/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

15. Modbus Slave Loader

Devices with UART or Ethernet can activate a Modbus slave dedicated to receiving new
firmware:

#define USE_MODBUS

 in config.h

The UART used if configured by LOADER_UART

and the Modbus slave configuration in modbus_app.c by (example)

static const MODBUS_PARS cMODBUS_default = {

 MODBUS_PAR_BLOCK_VERSION,
#if defined MODBUS_SERIAL_INTERFACES && defined SERIAL_INTERFACE
 {
 (1), // slave address
 },
 {
 (CHAR_8 | NO_PARITY | ONE_STOP | CHAR_MODE /*| UART_SINGLE_WIRE_MODE*/),
 // serial interface settings
 },
 {
 SERIAL_BAUD_115200, // baud rate of serial interface
 },
 {
 (MODBUS_MODE_RTU | MODBUS_SERIAL_SLAVE/* | MODBUS_RS485_POSITIVE*/),
 // RTU mode as slave
 },
 #if defined MODBUS_ASCII
 {
 (DELAY_LIMIT)(2 * SEC), // inter-character delays greater than 2s are
 considered errors in ASCII mode
 },
 {
 0x0a, // ASCII mode line feed character
 },
 #endif
 #if defined MODBUS_SUPPORT_SERIAL_LINE_FUNCTIONS &&
 !defined NO_SLAVE_MODBUS_REPORT_SLAVE_ID
 { 'u', 'T', 'a', 's', 'k', 'e', 'r', '-', 'M', 'O', 'D', 'B', 'U', 'S', '-',
 's', 'l','a','v','e' },
 #endif
#endif
};

uTaskerSerialLoader.doc/1.13 41/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Although the Modbus protocol is old it is still often found being used in many modern
processes due to the fact that it is simple, flexible and robust. The Modbus slave
configuration [modbus_app.c] allows uploading new firmware via a Modbus master (TCP or
serial in ASCII or RTU mode) using the following strategy (the technique has been proven to
be simple to implement and works reliably in numerous products but changing or extending
the method is also simple if needed):

- The slave has a block of 66 holding registers which are located by default at the start of the
holding register address range; the 65th holds the present loader state.
#define HOLDING_REGS_START 0 // start address
#define HOLDING_REGS_END 65 // end address

Each multiple register (65 register) write to the holding register start address (0 in this
configuration) consists of the following content, remembering that holding registers are 16 bit
each:

HEADER [index byte | data length byte]
DATA0 [data 0 byte | data 1 byte]
DATA1 [data 2 byte | data 3 byte]
..
DATA63 [data 126 byte | data 127 byte]

where index byte is a simple counter (initial value may be any value value between 0 and
0xff) that should increment or decrement (or simply change between frames). If the same
value is received in two consecutive frame receptions the content will be ignored since it is
recognised as a repetition (which can occur if the Modbus slave response is corrupted).

data length is the valid data content in bytes (128 for a full 64 holding register content).

data n is the firmware byte content, packed in the holding registers in big-endian order (they
are converted to the correct byte ordering for the target at reception, if needed).

- The master writes each block of new firmware as a single write to the 65 holding registers,
after which the content is programmed (on first write the application area of flash is
automatically erased too). The data length value is initially always 128.

- The master repeats writing 65 register blocks (and 128 data bytes) to transfer and program
the rest of the new code in a linear fashion.

- When the master has transferred all the new code it sends the last block with a data length
of less that 128 bytes; only the valid bytes are written and understood to signify the end of
the firmware upload file. If the firmware length happens to divisible by 128 it sends a further
dummy holding register write to the start of the register area with zero data length to close.

uTaskerSerialLoader.doc/1.13 42/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

- When the transfer has completed the new firmware is started automatically after a delay of
1s. During this time a read of the final holding register will return the value 0x5555, which
indicates a successful complete upload has taken place.

Should there be an address or frame length error during the process the final holding register
will be read as 0xaa01.

If the final holding register is read during the loading process it will return the last index byte
value that has been received.

For general details about configuring the Modbus protocol please consult the Modbus guide:
http://www.utasker.com/docs/MODBUS/uTasker_MODBUS.PDF

uTaskerSerialLoader.doc/1.13 43/59 25/04/21

http://www.utasker.com/docs/MODBUS/uTasker_MODBUS.PDF

www.uTasker.com µTasker – Serial Loader User’s Guide

16. I2C Slave Loader

Devices with an I2C slave controller can be configured to receive firmware from an I2C
master.

#define I2C_INTERFACE

 in config.h

For general details about I2C slave driver operation see the document
http://www.utasker.com/docs/uTasker/uTasker_I2C.pdf

whereby the I2C slave loader uses the interrupt call-back method as described in the
document.

When the I2C loader starts it checks the application area for erased flash so that it can inform
of its state if requested by the I2C master. It then waits to be addressed on its unique I2C
slave address that is configured by the define

#define OUR_SLAVE_ADDRESS 0x50

in Loader.h.

This value means that it is written to at address 0x50 and read from address 0x51.

The master must coordinate the loading by first checking the state of the slave's application
flash, which can be performed by reading three bytes from its read address.

[0x51] [Vmajor] [Vminor] [Flash state]

- The first byte of data returned is the I2C loader's major version number.
- The second byte read is the minor version number.
- The third byte is the flash state: 0x00 means that the flash is not erased and 0x01 means
that it is erased.

If more data is read, the three information bytes cycle, for example:

[0x51] [Vmajor] [Vminor] [Flash state] [Vmajor] [Vminor] [Flash
state], etc.

If the application flash is not signalling being in an erased state (0x01) the master can
command its deletion by writing the command 0x00, with confirmation key 0x52 0x84, which
gives the I2C write frame

[0x50] [0x00] [0x52] [0x84]

and waiting until the slave changes its flash state (0x01), for example by polling the state
until it is read being set accordingly.

A delete command will not be executed if the flash is already erased so it is also safe to
always sent a delete command and then poll the flash state until it indicates that it is ready
for programming.

uTaskerSerialLoader.doc/1.13 44/59 25/04/21

http://www.utasker.com/docs/uTasker/uTasker_I2C.pdf

www.uTasker.com µTasker – Serial Loader User’s Guide

Programming is performed by writing data with the command 0x01. The data can be written
in blocks of any length:

[0x50] [0x01] [D0] [D1] [Dn] …...

where Dn is the binary data to be programmed, starting at the first address in the application
flash area and increasing linearly.

Once the program loading has started, reads from the slave will no longer return the version
number and flash status but instead will return the programming state. The master can thus
check the programming state between writing blocks of data by reading 5 bytes as follows:

[0x51] [state] [length3] [length2] [length1] [length0]

where the state will be 0x01 when the loading is taking place and no errors have been
encountered. Length[4] is a counter (length0 is the least significant byte and length3 the most
significant byte in a long word representation) which indicates the amount of data that has
been received. The master can use this to verify that no data was lost during the process.

The data read is also cycled through these 5 bytes of information in case more data were to
be read.

Should the master ever wish to read the version and flash status after programming has
started it can write a dummy command

[0x50] [0x03]

which will reset the read mode. Once any further programming data has been sent the read
mode will be set back to the programming state again.

Once the master has programmed all data to the slave it can command a reset so that the
slave can restart and execute the new code. This is performed by sending the reset
command 0x02, together with confirmation key 0x55 0xaa:

[0x50] [0x02] [0x55] [0xaa]

The slave also uses this command to commit the start of the program code, which is had
saved to an intermediate buffer rather than writing directly to the start of flash. This is so that
an interruption of the programming process will leave the start of the application flash empty
so that the serial loader will automatically restart and not attempt to execute a non-completed
program.

The following shows a logic analyser trace of the programming of a small program to a
device via its slave I2C loader.

It is interesting to note that the initial flash deletion phase is clearly visible due to the fact that
the slave I2C device holds the I2C bus when it is not ready to complete operation (known as
clock-stretching).

A closer view of the delete command at the start of the recording shows that the following
read command (to check the erasure state after the delete command) doesn't complete yet

uTaskerSerialLoader.doc/1.13 45/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

due to the fact that the processor is in the process of deleting a sector if its flash which can
require several ms to complete.

During the delete phase, where a number of flash sectors are being erased, it is seen that
the slave device can only respond to interrupts in between each sector erase and so a
pattern emerges:

where the erase duration of each sector is seen to be around 10ms (example of 1k sectors
on KL02 processor).

Due to the I2C slave's ability to hold the bus when the reception cannot yet be handled no
additional software handshaking is required during the programming process.

uTaskerSerialLoader.doc/1.13 46/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

17. Conclusion

The µTasker Serial Loader may be programmed to a target board and used as an in-circuit
tool for loading application software via UART or a number of other interfaces. By rebuilding
the serial loader project the user can customise the characteristics of the loader to suit
individual target configurations.

In addition, the µTasker Serial Loader can be configured to operate as a USB-MSD device
(devices with USB device support); this can be in parallel to the SREC serial mode or as an
alternative to it. The USB-MSD uses binary files rather than SREC files and it was noted that
the link address of the application file is shifted when the USB-MSD mode is used (which is
also valid for the SREC operation when used in parallel) due to the fact that root file entry
content is also saved together with the software.

A further mode of operation that is possible is to load application software from an SD card
interface. In this mode of operation a software file name is defined which is checked for on
the SD card; if this file exists its content is compared with the present application software
loaded and loaded in case the file content is different to it.

When USB Host is available memory sticks can be used in a similar fashion to SD card
loading, whereby the USB-MSD Host loader can also be combined with the USB-MSD
Device loader to automatically detect whether a host PC is connected or mount an inserted
memory stick instead.

In Modbus environments the Modbus slave loader can operate on UARTs (ASCII or RTU) or
via TCP/IP.

Devices connected to an I2C bus can be programmed by a bus master in the I2C slave loader
mode.

Optional Freescale/NXP KBOOT compatible modes are supported on the UART and as
USB-HID class interface. The USB-HID mode can operate together with USB-MSD as
composite USB device.

Optional Freescale/NXP AN2295 compatible mode is supported on the UART, in parallel with
other loaders if required.

Boards with Ethernet can also make use of Ethernet Web Server boot loading, which
enables firmware updates to be performed from any browser.

This document has illustrated the operation of the serial boot loader and its various modes,
and detailed how it can operate together with any application program.

uTaskerSerialLoader.doc/1.13 47/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Modifications:

V0.01 5.5.2009: - Initial draft – work in progress. Not officially released.

V0.02 8.5.2009: - Added appendix with target/compiler specific details. Not officially
released.

V0.03 19.11.2009: - Added AVR32 setup and discussion of optional intermediate buffer
use during download. Not officially released.

V0.04 21.10.2010: - Correct LED blink speed during serial boot loader phase.

V1.00 04.06.2011: First release including USB-MSD operation

V1.01 25.11.2013: Serial Loader state diagrams and SD card boot loader mode added

V1.02 18.01.2014: Added MSD-USB implementation details and Kinetis CodeWarrior
configuration

V1.03 22.01.2015: Added Ethernet Web Server loading and KBOOT serial / USB-HID
support, a well as highlighting composite parallel modes of operation.

V1.04 29.01.2015: Added details of encrypted SD card content support and the behaviour
when UB-MSD LFN is longer than that supported by the upload file object.

V1.05 01.06.2015: Added AN2295 Developer's Serial Bootloader option.

V1.06 30.10.2015: Added USB-MSD Host Loader mode, including combining with USB-
MSD Device operation. Note that V1.2 of the serial loader (with USB Host support)
changes some project file names as follows:

- SDLoader.c renamed to disk_loader.c
- usb__loader.c renamed to usb_device_loader.c
- usb_host_loader.c added

The USB-MSD Device loader configuration define was changed from USB_MSD_LOADER to
USB_MSD_DEVICE_LOADER.

V1.07 5.9.2017: Added USB-MSD device SREC and Intel HEX format support.

V1.08 17.1.2018: Added Modbus slave (description not yet completed) and I2C slave
support.

V1.09 15.10.2018: Add appendix C with discussions of Serial Loader Mailbox and
configuring application area and security settings.

V1.10 21.9.2020: Add option to update multiple files from different locations on SD
card/memory stick to various processor memory locations.

V1.11 21.12.2020: Added details about the Modbus slave updating protocol.

V1.12 31.12.2020: Extend and correct details about the Modbus slave updating protocol.

V1.13 25.4.2021: Add FTP server method description.

uTaskerSerialLoader.doc/1.13 48/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Appendix A – Target and Compiler Specific Details

This appendix contains note which are relevant to specific targets and compilers, such as
how the application is correcty linked to work together with the µTasker Serial Loader.

a) Coldfire CodeWarrior

The location of the application code in FLASH is determined by the linker script file (*.lcf) as
used by the project target. In a ‘stand-alone’ project the memory will be defined so that the
reset vectors are positioned at the start of FLASH (0x00000000) as shown in the typical
excerpt below:

MEMORY
{
 flash1 (RX) : ORIGIN = 0x00000000, LENGTH = 0x000400
 flashconfig (RX) : ORIGIN = 0x00000400, LENGTH = 0x00000018
 flash2 (RX) : ORIGIN = 0x00000420, LENGTH = 0x003FBE0
 vectorram(RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
 sram (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00007C00
 ipsbar (RWX) : ORIGIN = 0x40000000, LENGTH = 0x0
}

SECTIONS
{

.ipsbar : {} > ipsbar

.flash1 :
{

Startup.s (.text)
. = ALIGN(0x10);

 } > flash1

.flashconfig :
{

flash_config.s (.text)
 } > flashconfig

.flash2 :
{

. = ALIGN(0x10);
*(.text)
. = ALIGN(0x10);

*(.rodata)
___DATA_ROM = .;

 } > flash2

...

Code a-1 Typical memory configuration for a stand-alone application

The sector flash1 is reserved for the reset vector (startup.s) and the flash configuration
sector is used to locate FLASH configuration values which are read by the device at reset

uTaskerSerialLoader.doc/1.13 49/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

In order to locate the reset vectors at the start address defined for operation with the serial
loader, the linker script content can be changed as follows:

MEMORY
{
 flash (RX) : ORIGIN = 0x00002800, LENGTH = 0x0003D800
 vectorram (RWX) : ORIGIN = 0x20000000, LENGTH = 0x00000400
 sram (RWX) : ORIGIN = 0x20000400, LENGTH = 0x00007C00
 ipsbar (RWX) : ORIGIN = 0x40000000, LENGTH = 0x0
}

SECTIONS
{

.ipsbar : {} > ipsbar

.flash :
{

Startup.s (.text)
. = ALIGN(0x10);
*(.text)
. = ALIGN(0x10);
*(.rodata)
___DATA_ROM = .;

 } > flash
...

Code a-2 Modified linker script for use with the serial loader

Note that the serial loader code is responsible for the FLASH configuration and so this is no
longer needed in the application. The application’s start up code is still set to be at the start
of the FLASH, but its address is now located at 0x2800 (10k), assuming that this is suitable
for the Coldfire serial loader.

The serial loader doesn’t define interrupt vectors within the FLASH vector area. It is therefore
important that the application works with interrupt vectors configured within RAM; this is
however the typical operation used and is also used by the µTasker application projects.

uTaskerSerialLoader.doc/1.13 50/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

b) Kinetis CodeWarrior

The location of the application code in FLASH is determined by the linker script file (*.lcf) as
used by the project target. In a ‘stand-alone’ project the memory will be defined so that the
reset vectors are positioned at the start of FLASH (0x00000000) as shown in the typical
excerpt below:

MEMORY {
 m_reset (RX): ORIGIN = 0x0, LENGTH = 0x8
 m_config (RX): ORIGIN = 0x400, LENGTH = 0x10
 prog_flash (RX) : ORIGIN = 0x410, LENGTH = 0x80000-0x410
 sram (RW) : ORIGIN = 0x1FFF01b0, LENGTH = 0x00020000-0x1b0
}

KEEP_SECTION { .RESET }
KEEP_SECTION { .FCONFIG }

SECTIONS {
.start: {

ALIGNALL(4);
__vector_table = .;
* (.RESET)

.= ALIGN(0x8) ;
} > m_reset
.config: {

ALIGNALL(4);
__flash_config = .;

 * (.FCONFIG)
.= ALIGN(0x8) ;

} > m_config
.app_text: {

. = ALIGN(0x10);
*(.text)
. = ALIGN(0x10);

*(.rodata)
___DATA_ROM = .;

} > prog_flash

...
}

Code b-1 Typical memory configuration for a stand-alone application

The sector m_reset is reserved for the reset vector (__vector_table) and the flash
configuration sector (m_config) is used to locate FLASH configuration values which are read
by the device at reset

uTaskerSerialLoader.doc/1.13 51/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

In order to locate the reset vectors at the start address defined for operation with the serial
loader, the linker script content can be changed as follows:

MEMORY {
 m_reset (RX) : ORIGIN = 0x8080, LENGTH = 0x20
 prog_flash (RX) : ORIGIN = 0x80a0, LENGTH = 0x80000-0x80a0
 sram (RW) : ORIGIN = 0x1FFF01b0, LENGTH = 0x00020000-0x1b0
}

KEEP_SECTION { .RESET }
KEEP_SECTION { .FCONFIG }

SECTIONS {
.start: {

ALIGNALL(4);
__vector_table = .;
* (.RESET)

.= ALIGN(0x8) ;
} > m_reset
.config: {

ALIGNALL(4);
__flash_config = .;

 * (.FCONFIG)
.= ALIGN(0x8) ;

} > m_config
.app_text: {

. = ALIGN(0x10);
*(.text)
. = ALIGN(0x10);

*(.rodata)
___DATA_ROM = .;

} > prog_flash

...
}

Code b-2 Modified linker script for use with the serial loader

Note that the serial loader code is responsible for the FLASH configuration and so this is no
longer needed in the application. The application’s start up code is still set to be at the start
of the FLASH, but its address is now located at 0x8080, assuming that this is suitable for the
Kinetis serial loader.

The serial loader doesn’t define interrupt vectors within the FLASH vector area. It is therefore
important that the application works with interrupt vectors configured within RAM; this is
however the typical operation used and is also used by the µTasker application projects.

uTaskerSerialLoader.doc/1.13 52/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

c) Luminary-Micro Evaluation Boards and GCC Compiler

The Luminary-Micro evaluation boards do not include a serial interface in form of the normal
DBUB connection and RS232 driver. Instead UART0 is connected to a channel of an FT2232
device. This device allows a USB connection to the development PC with two USB device
channels; the first one used by the Luminary USB Debugger and the second as a serial
connection to UART0 (Virtual COM).

In order to work with the serial interface it is only necessary to connect the normal debug
USB cable (which is also used for downloading code using the Luminary Micro Flash
Programmer, for example) and then open a terminal emulator on the Virtual COM port which
was installed. How the Virtual COM port can be checked and reconfigured for use by
different COM ports is explained in detail in chapter 4 of the µTasker USB Demo document:
http://www.utasker.com/docs/uTasker/uTaskerV1.3_USB_Demo.PDF

It is recommended to use TeraTerminalPro for serial loading (further details about this
program are also contained in the document above).

The position of the application code is controlled by the linker script file (*.ld) as used by the
target configuration. A typical configuration for the application linked to the start address
0x00000000 is shown below:

MEMORY
{
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x0003f000
 SRAM (wx) : ORIGIN = 0x20000000, LENGTH = 0x00010000
}

SECTIONS
{
 __SRAM_segment_start__ = 0x20000000;
 __SRAM_segment_end__ = 0x20010000;
 __FLASH_segment_start__ = 0x00000000;
...

Code c-1 Typical memory configuration for a stand-alone application

In order to locate the application code at a different start address it is necessary to modify the
segment start as in the following example:

MEMORY
{
 FLASH (rx) : ORIGIN = 0x00000000, LENGTH = 0x0003f000
 SRAM (wx) : ORIGIN = 0x20000000, LENGTH = 0x00010000
}

SECTIONS
{
 __SRAM_segment_start__ = 0x20000000;
 __SRAM_segment_end__ = 0x20010000;
 __FLASH_segment_start__ = 0x00002000;
...

Code c-2 Modified linker script for use with the serial loader

The application’s start up code is now located from 0x2000 (8k), assuming that this is
suitable for the Luminary Micro serial loader.

uTaskerSerialLoader.doc/1.13 53/59 25/04/21

http://www.utasker.com/docs/uTasker/uTaskerV1.3_USB_Demo.PDF

www.uTasker.com µTasker – Serial Loader User’s Guide

d) AVR32 - AT32UC3B0256 on EVK1101 using IAR

The ATMEL AVR32 EVK1101 has an RS232 connector on USART1. This can be configured
as interface to use to download the new SREC file.

It is recommended to use TeraTerminalPro for serial loading (further details about this
program are also contained in the document above).

The position of the application code is controlled by the linker script file (*.xcl) as used by the
target configuration. A typical configuration for the application linked to the start address
0x80000000 is shown below:

-Z(CODE)RESET=80000000-800003FF
-Z@(CODE)EVTAB=80000100-8003FFFF
-Z@(CODE)EV100=80000100-8003FFFF
-P(CODE)EVSEG=80001000-8003FFFF
-P(CODE)CODE32=80000000-8003FFFF
-P(CONST)DATA32_C=80000000-8003FFFF
-Z(CONST)INITTAB,DIFUNCT=80000000-8007FFFF
-Z(CONST)CHECKSUM,SWITCH=80000000-8007FFFF
-Z(CONST)DATA21_ID,DATA32_ID=80000000-8007FFFF
-Z(CONST)RAMCODE21_ID,RAMCODE32_ID=80000000-8007FFFF
-Z(CONST)ACTAB,HTAB=80000000-8007FFFF

Code d-1 Typical memory configuration for a stand-alone application

In order to locate the application code at a different start address it is necessary to modify the
segment start as in the following example:

-Z(CODE)RESET=80002800-80002aff
-Z@(CODE)EVTAB=80002900-8003FFFF
-Z@(CODE)EV100=80002900-8003FFFF
-P(CODE)EVSEG=80003800-8003FFFF
-P(CODE)CODE32=80002800-8003FFFF
-P(CONST)DATA32_C=80002800-8003FFFF
-Z(CONST)INITTAB,DIFUNCT=80002800-8007FFFF
-Z(CONST)CHECKSUM,SWITCH=80002800-8007FFFF
-Z(CONST)DATA21_ID,DATA32_ID=80002800-8007FFFF
-Z(CONST)RAMCODE21_ID,RAMCODE32_ID=80002800-8007FFFF
-Z(CONST)ACTAB,HTAB=80028000-8007FFFF

Code d-2 Modified linker script for use with the serial loader

The application’s start up code is now located from 0x2800 (10k), assuming that this is
suitable for the AVR32 serial loader.

uTaskerSerialLoader.doc/1.13 54/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Further, note that the stack pointer start location is also defined in the linker script. It is taken
from the RAM settings, which should correspond to the size of the available SRAM in the
device being used.

-Z(CODE)RAMCODE21=00000105-00007FFF
-Z(DATA)DATA21_I,DATA21_Z,DATA21_N=00000105-00007FFF
-Z(CODE)RAMCODE32=00000105-00007FFF
-Z(DATA)DATA32_I,DATA32_Z,DATA32_N=00000105-00007FFF
-Z(DATA)TRACEBUFFER=00000105-00007FFF
-Z(DATA)SSTACK+_SSTACK_SIZE#00000105-00007FFF
-Z(DATA)CSTACK+_CSTACK_SIZE#00000105-00007FFF
-Z(DATA)HEAP+_HEAP_SIZE=00000105-00007FFF

Code d-3 Linker script configured for 32k SRAM

The AVR32 requires the use of an intermediate buffer (see chapter 6). Its size can be
typically set to 16k for a processor type with 32k of internal SRAM, whereby 16k is reserved
for the intermediate binary buffer and another 4k by the UART’s input buffer.

When working with projects with IAR, make sure that the correct linker script is selected for
the target (for example lnkuc3b0256_bm.xcl for the AT32UCB application, or
lnkuc3a0512_bm.xcl for the AT32UCA application) with the correct linker start address to
match the loader used. When debugging with IAR make sure that the linker option is set to
generate debug information for C-Spy, including all Module-local symbols. In the compiler
setting ensure that the output generates debug information. In the general options select the
exact target device being used – this will ensure that the target can be correctly connected to
and source level debugging works correctly.

uTaskerSerialLoader.doc/1.13 55/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

Appendix B – Application Requirements for use together with the
µTasker Serial Loader

In order for an application to be able to operate together with the µTasker Serial Loader there
are several points to be considered. Generally there should be no difficulty to achieve
compatibility as long as the guide is followed:

1. The application must be linked to start at the application defined by the serial loader.
The start of this code must include the standard reset vector table so that the jump
from the serial loader to the application can take place as if it were a normal reset
entry. For ARM Cortex M processors this means that the first long word address
holds the value of the initial stack pointer and the second the initial program counter.

2. The µTasker Serial Loader will configure the watchdog operation; either enable it or
disable it as configured in its code. If the watchdog is enabled the application must
service it to avoid a reset when it fires or disable it if this is allowed on the HW being
used.

3. The µTasker Serial Loader configures processor clocks and jumps to the application
with clocks configured at their defined operating speed. Either the application an
continue using this setting or an adjust to suit its final requirements; the code used to
do this should consider that the clocks/PLLs may already be configured and not
cause subsequent errors by assuming the reset state.

4. The µTasker Serial Loader jumps to the application with interrupts disabled. All
peripherals are essentially set to their default states, although may have been
temporarily used.
Exceptions: The GPIO used by the µTasker Serial Loader used for forced loading,
watchdog operation and run LED may be programmed when the application starts
up. The application should therefore not assume the state of these ports at reset.

5. The µTasker Serial Loader will have configured any flash configurations since it
occupies the physical reset area. Configurations in the application area are generally
superfluous and can be removed if desired (to save code space).

6. Since the µTasker Serial Loader always runs to check the state of the application
code its variables will also be configured. This means that RAM will not have random
values as is normally the case after a power on reset.

7. The µTasker Serial Loader will generally occupy the default interrupt vector table.
This means that the application needs to ensure that its interrupt vectors are
configured accordingly for their physical location when in Flash. When these are
relocated to RAM as standard operation there is no consequence. See also the link
below or more details on this topic.

The following is a guide for Teensy 3.1 Arduino/Teensyduino users to allow their application
to be used together with the uTasker Serial Loader:

http://www.utasker.com/forum/index.php?topic=1869.0

uTaskerSerialLoader.doc/1.13 56/59 25/04/21

http://www.utasker.com/forum/index.php?topic=1869.0

www.uTasker.com µTasker – Serial Loader User’s Guide

Appendix C – Serial Loader Mailbox, Ensuring its Application
Settings and Enabling Security

One question that is fundamental to the use of the serial loader is when it should operate
(when there is an application already present)?

This is controlled by the macro FORCE_BOOT() which can be (1) so that it always starts but
is often the check of a digital input to see whether the user wants it to be used or not. Various
other possibilities could however be more suitable for a particular application, meaning that a
mixture of various factors could also exist.

Although it is always recommended to have an input to force the serial loader to start that
can be used in an emergency, the use of the Serial Loader Mailbox is an option that can be
used to allow the application to make the decision as to whether the loader be started or not.
It works by the application placing a command in an SRAM location that is otherwise never
used by the system, commanding a reset, and the serial loader detecting this valid
command.

The location reserved for this is the very last short word in SRAM and to preserve this, both
the serial loader and the µTasker application always set their stack pointers to at least one
long word below the top of SRAM in order to guarantee that the last one is never used (and
potentially corrupted in the process). A non-µTasker application must therefore also ensure
this in order to be able to reliably work with the Serial Loader Mailbox technique.

This is an example of how the application commands the serial loader to start:

*BOOT_MAIL_BOX = RESET_TO_SERIAL_LOADER;
fnResetBoard();

whereby the first line sets the command (defined as 0x89a2) to the mailbox entry (last
unsigned short location in SRAM – see the defines in the hardware headers for full details on
the target in question).
The second line is the standard reset command, which commands a core reset.

Assuming the serial loader uses an input for basic control (eg.):
#define FORCE_BOOT() (_READ_PORT_MASK(E, SWITCH_3) == 0)

its decision can be adapted to include the mail box as follows:

#define FORCE_BOOT() (((SOFTWARE_RESET_DETECTED()) && (*BOOT_MAIL_BOX ==
RESET_TO_SERIAL_LOADER)) || (_READ_PORT_MASK(E, SWITCH_3) == 0))

The SOFTWARE_RESET_DETECTED() macro checks to see whether the last reset was a
commanded reset (rather than a power up reset, watchdog reset, etc., in which case it would
not consider the mail box value). The result is thus a reliable detection of the command, plus
the original option of using an input too.

Once the serial loader has checked the mailbox value it always resets it to ensure that it can
not be recognised multiple times!

uTaskerSerialLoader.doc/1.13 57/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

The µTasker project doesn't use the linker script to configure the stack if at all possible
(which would be difficult to maintain and keep portable) but instead does this in code. The
Cortex-M4 reset vector is show as reference:

 (void *)(RAM_START_ADDRESS + (SIZE_OF_RAM – NON_INITIALISED_RAM_SIZE)),
 // stack pointer to top of RAM
 (void (*)(void))START_CODE, // start address

whereby the first entry is the initial stack pointer value that the processor loads and the
second is the initial program counter (typically the address of main()).

Rather than setting the stack pointer value to the top of the SRAM area it is set to a lower
value, governed by NON_INITIALISED_RAM_SIZE. This is at least 4 in an application and at least
16 for the serial loader and includes an optional user value called PERSISTENT_RAM_SIZE, which
defaults to 0.
The user can add a non-zero project definition for PERSISTENT_RAM_SIZE if a larger area of
untouched SRAM could be of benefit for the application in question.

When the serial loader is set up the start address of the application and the size of the
application are two important parameters, which are both defined, for a particular target, in
Loader.h. Examples are:

#define UTASKER_APP_START (32 * 1024) // application starts at this address

#define UTASKER_APP_END (unsigned char *)(UTASKER_APP_START + (128 * 1024))
 // end of application space - after maximum application size

Obviously the application is expected to be at the address 0x8000 (32k) and its maximum
size is 128k.

Beware however that when USB-MSD is in use the application start address is in fact a
file object and the application itself starts after this file object (often 0x80 bytes further and
thus 0x8080 in this example). See
#define _UTASKER_APP_START_ (UTASKER_APP_START + (ROOT_FILE_ENTRIES * 32))

for details.

The choice of application start (or link) address is generally dictated by the size of the serial
loader itself because the application must start at an address beyond the end of the serial
loader and also in a Flash sector that is not shared with the serial loader's code. If the serial
loader is only 7k in size and the flash granularity were to be 4k this would give 8k as the
typically optimal application start address (not leaving unused sectors between the two).

If the remaining Flash is to be used exclusively by the application program the application
size can be set to

#define UTASKER_APP_END (unsigned char *)(SIZE_OF_FLASH) // end of application
space - after maximum application size

however, in many instances the application may be using the Flash also for saving
parameters (eg. µParameterSystem) to or for a file system (eg. µfileSystem) and so space
for these must be reserved after the maximum application area.

This means that the decision for maximum application size is project specific and a
compromise between the amount of Flash preserved (not deleted when new code is loaded)
and the maximum application size that is ever expected in the future. Its choice should thus
be considered carefully!

uTaskerSerialLoader.doc/1.13 58/59 25/04/21

www.uTasker.com µTasker – Serial Loader User’s Guide

It is to be noted that Kinetis processors have their Flash configuration (which can include
security settings to protect Flash areas or block reading Flash content using a debugger) in
the first Flash sector between addresses 0x400 and 0x40f. Therefore it is the serial loader
that delivers this setting and not the application.

When security for program code is required the serial loader must be configured correctly
(and not the application, which can't influence it). An example of the default, non-protected
flash security setting is

#define KINETIS_FLASH_CONFIGURATION_SECURITY (FTFL_FSEC_SEC_UNSECURE |
FTFL_FSEC_FSLACC_GRANTED | FTFL_FSEC_MEEN_ENABLED | FTFL_FSEC_KEYEN_ENABLED)

which can be changed to

#define KINETIS_FLASH_CONFIGURATION_SECURITY (FTFL_FSEC_SEC_SECURE |
FTFL_FSEC_FSLACC_GRANTED | FTFL_FSEC_MEEN_ENABLED | FTFL_FSEC_KEYEN_ENABLED)

to achieve this.

Beware that some programming tools don't allow setting security by default (they will modify
this byte to avoid securing devices by mistake) and if this turns out to be the case, consult
the tool manufacturer's manual for details of overriding it.

Furthermore, Teensy users with HalfKay programming devices on board should carefully
evaluate security settings since it can't be guaranteed that certain configurations may cause
this loading device to no longer operate.

uTaskerSerialLoader.doc/1.13 59/59 25/04/21

	1. Introduction
	1.1 SREC Loader
	1.2 AN2295 Developer's Serial Bootloader
	1.3 USB-MSD Device Operation
	1.4 USB-MSD Host Operation
	1.5 USB-HID
	1.6 KBOOT UART
	1.7 SD Card Operation
	1.8 Ethernet Web Server
	1.9 FTP Server
	1.10 Modbus Slave
	1.11 I2C Loader

	2. Programming the µTasker Serial Loader
	3. Building the µTasker Serial Loader
	4. Using the µTasker Serial Loader - SREC
	5. Intermediate Buffer Required for Certain Processor Types
	6. Preparing an Application and working with the Serial Loader
	7. USB-MSD Device Boot Loader
	7.1 USB MSD Device Implementation Details
	7.2 Software Password Protection
	7.3 Software Overwriting
	7.4 Compatibility and Disclaimer

	8. USB-MSD Host Bootloader
	9. USB-HID
	10. KBOOT UART
	11. AN2295 Developer's Serial Bootloader
	12. SD-Card Loader
	12.1 Loading Multiple Files and Controlling the location of the Firmware File(s)

	13. Ethernet Web Server
	14. FTP Server
	15. Modbus Slave Loader
	16. I2C Slave Loader
	17. Conclusion
	Appendix A – Target and Compiler Specific Details
	a) Coldfire CodeWarrior
	b) Kinetis CodeWarrior
	c) Luminary-Micro Evaluation Boards and GCC Compiler
	d) AVR32 - AT32UC3B0256 on EVK1101 using IAR

	Appendix B – Application Requirements for use together with the µTasker Serial Loader
	Appendix C – Serial Loader Mailbox, Ensuring its Application Settings and Enabling Security

