
 
 

uTaskerTELNET.doc/0.1  Copyright © 2010 M.J.Butcher Consulting 

 

���������	�
	��

�����	

 

 

 

       

 

 

µTasker Document 

TELNET 

 

          

          

          

          

          

          

          

          

          

 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 2/10 21.04.2010 
  

 

Table of Contents 
1.� Introduction .....................................................................................................................3�
2.� Overview of TELNET .....................................................................................................4�
3.� Configuring for TELNET use ..........................................................................................4�
4.� Sending TELNET frames ................................................................................................4�
5.� Receiving TELNET frames .............................................................................................4�
6.� TCP Windowing ..............................................................................................................5�
7.� Congestion window - ucCwnd ........................................................................................6�
8.� Window management ......................................................................................................6�
9.� ACKed frames .................................................................................................................8�
10.� Out of order ACKs .......................................................................................................8�
11.� Lost ACKs ...................................................................................................................8�
12.� Conclusion ................................................................................................................. 10�
 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 3/10 21.04.2010 
  

1. Introduction 
 

µTasker is an operating system designed especially for embedded applications where a tight 
control over resources is desired along with a high level of user comfort to produce efficient 
and highly deterministic code. 

The operating system is integrated with TCP/IP stack and important embedded Internet 
services along-side device drivers and system specific project resources. 

µTasker and its environment are essentially not hardware specific and can thus be moved 
between processor platforms with great ease and efficiency. 

However the µTasker project setups are very hardware specific since they offer an optimal 
pre-defined (or a choice of pre-defined) configurations, taking it out of the league of “board 
support packages (BSP)” to a complete “project support package (PSP)”, a feature enabling 
projects to be greatly accelerated. 

This document discusses the implementation and use of the TELNET protocol. 

 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 4/10 21.04.2010 
  

2. Overview of TELNET 
To do... 

 

3. Configuring for TELNET use 
To do... 

 

4. Sending TELNET frames 
To do... 

 
 

5. Receiving TELNET frames 
To do... 

 
 

 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 5/10 21.04.2010 
  

6. TCP Windowing 
 
Telnet is useful for realising serial / LAN converters. Data received from the serial interface is 
transmitted to a destination IP address and frames received from a remote IP address are 
sent out over the serial interface. Using this technique it is very easy to allow equipment with 
a standard serial port but not Ethernet capabilities to be made Internet capable – it can then 
be monitored or controlled at a distance and TELNET is very suited to this job. 

Assume the serial interface is 115’200b/s and it is connected to a high speed Ethernet. 
Initially you would think that the Ethernet (or better TCP protocol over the Ethernet) would 
have no problems with the 115’200b/s data rate and of course this is true, but only when 
TCP is using active windowing. 

Consider the non-windowing case where say 512 bytes are received from the serial 
interface, packed into a TCP frame and sent to the destination IP address. The 512 bytes are 
collected in about 40ms and so to achieve the throughput of 115’200b/s a TCP frame must 
be sent once every 40ms. The actual transmission of the TCP frame over a short distance 
100M Ethernet connection will take about 52us and so is almost negligible. But we mustn’t 
forget the fact that many TCP solutions use what is called Delayed ACK, which means that 
the receiving side doesn’t acknowledge a received TCP frame immediately but instead will 
wait up to about 200ms, hoping to be able to piggy-back the ACK along with some data 
which the application may be sending back. If the ACK is sent after 200ms and the next TCP 
frame is not sent before the previous ACK has been received (non-windowing) then the 
throughput is limited to about 5 TCP frames a second but in our case we really need 25 
frames a second to achieve the 115’200b/s serial throughput. If you try it you will see that the 
maximum serial speed which can be transmitted will be only around 19’600b/s without the 
serial interface having to use flow control to limit data. This also assumes a short distance 
with negligible transmission delay – a round trip time of zero, whereas over the Internet the 
ACKs may well be subject to even longer delays due to transmission distances. So in fact 
our fast Ethernet interface can only just handle 19’600b/s from the serial interface (on a good 
day) – what a let down…!! 

So it is clear that a non-windowing solution is not much use for this application and so 
windowing support is required. It can be activated by setting #define 
SUPPORT_PEER_WINDOW in config.h and the maximum number of open windows is 
defined by WINDOWING_BUFFERS – 2 is in fact usually enough to unblock the situation 
described above and more will only really be noticeable when there are long transmission 
delay such as in the Internet. 4 are fairly generous and suggested as default value. 

We have seen that windowing helps to achieve a high data throughput at the price of 
increased protocol complexity and a bit more RAM. We’ll take a look at how the µTasker 
adds windowing to the TELNET protocol in a manor using as little additional resources as 
possible. 

The following variables are added to the TCP_TX_BUFFER when windowing is enabled: 

unsigned short usOpenBytes;    // Total bytes not yet acked 
unsigned char  ucCwnd;         // congestion windows 
unsigned char  ucOpenAcks;     // Total frames not yet acked 
unsigned char  ucPutFrame;     // tx_window for next use 
unsigned char  ucGetFrame;     // first outstanding tx_window 
TCP_WINDOWS_LIST tx_window[WINDOWING_BUFFERS]; // window management 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 6/10 21.04.2010 
  

 

7. Congestion window - ucCwnd 
When a TCP connection is established it is not good practice to bombard the destination with 
TCP frames just because we are working with windowing and don’t wait for ACKs to each 
frame. We don’t yet know what the characteristics of the connection are like, such as the 
round trip delay time. So we start carefully using a counter known as the congestion window 
and don’t send more than one additional TCP frame before the first transmission is 
acknowledged. We then increase it when we see that these two TCP frames were 
acknowledged together. We continue increasing it until either the maximum number of 
windows is being sent or the number of outstanding frames without acknowledgements stops 
increasing (an indication of the round trip time, which will hardly pass 2 outstanding frames at 
a time on a network with small round trip delays). 

 

8. Window management 
Just image if each transmitted frame were to be delivered without errors - it would make life 
so simple. We could just send the data to our heart’s content and be sure that the destination 
will receive it, and then we could get on with what else we are doing and just trash any 
copies of the data which was transmitted since the receiver has it and we probably don’t 
need it again. 

Of course life is not as simple as that and we have to be capable of retransmitting any data 
which we detect as not arriving at its destination. This requires that we do not trash it as soon 
as it has been sent but keep a copy up to the point that we can be very sure that it has 
actually successfully arrived. Since we are sending the data in a number of windows it must 
always be possible to regenerate one or more TCP frames which don’t seem to have arrived 
correctly at the destination. 

An ACK matching a transmitted window, or series of transmitted windows, received a certain 
time after sending them, is a sign the data has successfully arrived and that we no longer 
need to monitor them. When there is no ACK from a transmitted window or series of 
transmitted windows after a longer delay it is an indication that data has been corrupted or 
lost underway and it is our job to retransmit, a number of times if necessary, until they are 
either finally received or it becomes clear that the connection has broken down. 

The following illustration shows the case where three TCP frames have been transmitted and 
are awaiting corresponding ACKs. In addition there are some bytes waiting to be sent but 
cannot presently be sent using windowing since the congestion window is not open wide 
enough. It should always be possible to regenerate any of these frames or any number of 
them if necessary. It must also be possible to recognise that one or more of them have been 
successfully acknowledged so that the memory space can be freed for use by subsequent 
frames. 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 7/10 21.04.2010 
  

�
�

�
��

�
�

�
�

	


 � �  � ������� � ��� �
�� � ������ ����������	��

� � ��� � � 
 �� � �����������������������
� � �� � �  � ! � " # �$ ����������������% �
� � & � # � ��� �� ������������������������%
� � ' �" ( � ) ��� � � � ���������������*
� � ��� � � 
 �� �
� � �� � �  � ! � " # �$ �
� � & � # � ��� ��
� � ' �" ( � ) ��� � � � �
� � ��� � � 
 �� � ���������������������+ ,
� � �� � �  � ! � " # �$ �����������������% �
� � & � # � ��� �� �������������������������%
� � ' �" ( � ) ��� � � � ���������������*
� � ��� � � 
 �� � ���������������������+ -
� � �� � �  � ! � " # �$ �����������������% �
� � & � # � ��� �� �������������������������%
� � ' �" ( � ) ��� � � � ���������������*

� � .  � " �/ �� � ����������������������* -
� � �) " ( ���������������������������������,
� � .  � " 0 �  � �������������������������*
� � �� ���� � � ��������������������������+
� � 1 � ���� � � ��������������������������,

� � 2 � �� 
 �� ����������������������������3
� � 2 � �� �" ( ���������������������������3
� � �� �  � �
 �� � ����������������������* -
� � ' � ���" # 
 �� � ���������������������4 5

 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 8/10 21.04.2010 
  

9. ACKed frames 
 

When windowed TCP frames are acknowledged then they can be either acknowledged 
individually, in which case the ACKs to each frame arrive individually some time later and 
when each ACK is received, the corresponding windowed segment can be trashed since it 
has obviously arrived at the destination. This is performed by simply incrementing 
ucGetFrame by one and updating the buffer block appropriately. 

However it is more common that there is not an acknowledgement received for each TCP 
window frame sent but rather there is one ACK received for at least two TCP window frames. 
The reason is that the delayed ACK is started on reception of the first TCP windows frame 
and as soon as the second TCP frame window is received by the destination it sends a 
single ACK for the two received frames. Therefore it is possible to trash as many TCP 
windows frames as signalled by the received ACK. Again this is easily performed by 
incrementing ucGetFrame as many times as necessary and updating the buffer block 
appropriately. 

 

 

10. Out of order ACKs 
 

It is not excluded that TCP frames arrive out of order and so also an ACK can arrive out of 
order. Assume that one ACK was sent to acknowledge the first and second TCP window 
frames, followed by a third to acknowledge the third TCP window frame. Somewhere out in 
the Internet the second ACK frame overtook the first and so arrived first. 

This frame actually acts as an acknowledgement for all three windows and so all of our 
backed up data is trashed and we are already happy. Then the initial ACK is received but is 
silently discarded as there is no outstanding data waiting to be acknowledged. 

Therefore such out of order acknowledgments do not cause any difficultly at all…. 

 

11. Lost ACKs 
 
Lost ACKs can be due to several reasons. Here is a list of possibilities which is not 
absolutely complete but will give you the general idea: 

- The ACK arrived but is corrupted and so ignored. 

- The ACK got lost underway and never arrives at our receiver. 

- The ACK is never sent by the remote side due to a software error there. 

- The ACK is never sent by the remote side since our original data never arrived or 
arrived with an error. 

In our example case we have sent three TCP windows frames and are expecting between 
one and three ACK frames from the remote side. One, two or three of these could never 
arrive, indicating that some or all of our data was possibly never received at the other side. 
We must be able to recover from each of these possibilities and so we will analyse them now 
to show that we can indeed do so and the TCP connection will remain reliable, although 
throughput will obviously be reduced for a short time. 

 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 9/10 21.04.2010 
  

The µTasker demo project included support for making tests of the TCP implementation and 
this was used to verify and analyse the real reaction to loss of message. The support is 
activated in config.h using the #define TCP_TEST. The project requires also TELNET 
support with #define USE_TELNET, which will automatically activate the necessary 
windowing support. 

The tests were performed first in the simulator environment and the Ethernet frames 
recorded with Ethereal for analysis and also for playback to analyse and verify the code 
operation. 

The same tests can be performed on any supported target hardware for comparison and 
confirmation that the reaction and performance is equivalent to the results with the simulator.  

 

The test is performed in the menu “TCP Test”, using the command “window”. This command 
accepts a parameter which defines a corrupted message to be sent in the future. “window 0” 
means perform the test with no errors. “window 1” means corrupt the next TCP frame which 
is sent. “window 2” means corrupt the second TCP frame which is sent, etc. 

After a short delay to allow any present TELNET activity to terminate the test program sends 
a number of short text messages one after the other at intervals of 50ms. This feeds the TCP 
buffer with ...to do... 

 
 
 

 
 



   
www.uTasker.com µTasker – TELNET V1.4 

 

uTaskerTELNET.doc/0.1 10/10 21.04.2010 
  

12. Conclusion 
 
This document is in progress and has not been officially released. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modifications: 
- V0.1 21.4.2010 – provisional version for the documentation page 

 


