

uTaskerV1.3_user_guide.doc/0.2 Copyright © 2009 M.J.Butcher Consulting

���������	�
	��

�����	

µTasker Document

µTasker User Guide – First Steps for New Users

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 2/18 6.03.2009

Table of Contents
1.� Introduction ...3�
2.� Creating Your Own New Project ...4�
3.� Customising the Simulator for Your New Project ..5�
4.� Adding New Service Packs ..7�
5.� Adding a New Task to Your Project ..8�
6.� Second Example – The Task being configured by another Task 11�
7.� Third Example – Adding a Queue to Your Task and getting it to do a bit more Work 12�
8.� Adding some existing code to your project .. 15�
9.� Conclusion .. 17�
Appendix A - µTasker Commands use in this Document .. 18�

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 3/18 6.03.2009

1. Introduction

The µTasker project is based on a demonstration project. This project is configured to work
with the µTasker simulator and various compilers (IDEs) for its various supported processors.
New users are advised to start by working through the µTasker tutorial delivered with the
package in order to get to know the µTasker simulator, the basics of the demonstration
project and generally working with the hardware.

Once the demonstration project has been used for first experimentation with the simulator
and on the real target you should have a good feel for what it offers. In fact you should
recognise that it is not just showing how to compile and load a simple project which flashes
LEDs (although it does do that of course) but that it represents a project base which is
suitable for a large amount of real and professional projects – it configures an Ethernet
interface with TCP/IP services based on user parameters in the µParameterSystem based
on swap blocks to ensure no data loss during power down sequences; it allows interactive
web pages to be tested and modified in the µFileSystem (which can be either in internal
FLASH or in external SPI based FLASH); it has an active watchdog monitoring correct
operation and recovering from system failures; it has optional low power support using the
low power wait/sleep modes of the processors under control of a low-power task; it supports
a menu driven interface via UART, USB (if available in the chip) or TELNET showing
alternative methods of monitoring and configuring; it even supports the encrypted upload of
new firmware via a web browser interface (and USB). Basically it delivers the base for most
real projects which can be simply adapted for project specific purposes - the user can add
new application tasks and concentrate on this part of the job rather than having to redesign a
complete system and lose precious project time.

This guide takes you through the process involved to use this base to make fast progress on
integrating your own specific code, including how to add your project to the environment
through to how to add your new tasks which will later run alongside any of the existing
services which you would like to retain. You will find that the environment and its features
can be easily configured and also hardware interfaces flexibly assigned. Your own code can
be added and make use of the µTasker operating system support and your modules be
constructed in a modular and easily understandable framework.

All of the subjects discussed in this document can be easily tested in the µTasker simulator
and once the simple introduction, including clear examples, has been worked through there
should be nothing standing in way between you and your first powerful project operating!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 4/18 6.03.2009

2. Creating Your Own New Project

The µTasker demo project is indeed ready to run and it can also be modified or extended
with your own code. However there is a better way to start so that the original project
remains intact in case of the need for a reference or to simplify service pack upgrades later
which will add improvements and more features to the project environment.

First we will take a quick look at what the original demo project looks like when viewed in the
file manager:

Figure 1. View of the µTasker project directory in the file manager

This is an example of a fresh project (for the Coldfire) showing that the applications
directory in fact contains 2 projects – one is the uTaskerV1.3 demo application and the other
is the uTasker boot loader project. Some packages will not have a boot loader project and
some may even have more projects. The right hand side shows the contents of the
uTaskerV1.3 application containing some application files and directories for the µTasker
simulator and some compiler targets.

To add a new project, or several new projects as time goes by, start off by making a copy of
the uTaskerV1.3 application. Rename it to suit your new project so that the directories now
look like this:

Figure 2. View after adding three new application project sub-directories

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 5/18 6.03.2009

Here a further three applications have been added, each containing a copy of the content of
the original uTaskerV1.3 application, which you can in each case use as base for your new
project.

In fact it is possible to build the new project in exactly the same way as the uTaskerV1.3
project since all projects use purely referenced paths to locate their source files. But by
editing the actual target projects with new project names you can then customise the outputs
to generate targets corresponding to the actual project if you want.

One important thing to remember is that everything in the new application directory is project
specific code. It can be changed as desired without affecting general project code (which can
be shared between projects). You can set up config.h and app_hw_XXXX.h to suit the
specific project and hardware. types.h can also be optimised for a project. The other
application stuff can be deleted if not required, or renamed, or new ones can be added as
needed.

3. Customising the Simulator for Your New Project

If you look at the contents of the simulator directory you will find something similar to this:

Figure 3. Simulator directory contents

This is how it looks with the original VS6.0 project but it may have some slightly different files
if you have converted it to a newer format. Since your project is no longer uTaskerV1-3 but
maybe uTaskerSuperGizmo the project can be quite easily customised by renaming the
files with the name uTaskerV1.3 to the new project name. Then it is necessary to open up
the renamed files called uTaskerSuperGizmo.dsw and uTaskerSuperGizmo.dsp using
a text editor (not VisualStudio!!) and do a search and replace of all occurrences of
uTaskerV1-3 with uTaskerSuperGizmo. You may see a warning in the files, something
like “# WARNING: DO NOT EDIT OR DELETE THIS WORKSPACE FILE!” but this can
be ignored – probably Microsoft will not be so pleased about this technique being used but it
works very simply.

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 6/18 6.03.2009

You can do something similar with your cross compiler hardware target but the details will
probably depend a bit on exactly which one you are using.

Don’t forget also that any changes to the source files (removed ones, renamed or added
ones) will also have to be made in each of the target environments (VS simulator project,
GNU make file, CodeWarrior IDE etc.). But this is nothing new and you are probable very
familiar with how this is done anyway.

Do be sure that you edit and include paths in your cross compiler target. For example, you
will usually find a configuration setting called something like Preprocessor Options ->
User Include Directories. This may have a setting like
..\\..\\..\\Applications\\uTaskerV1.3, which is informing the compiler
environment to use this location as ‘second’ choice when searching for include files. Make
sure that this is edited to specify that it should use the new target directory, eg.
..\\..\\..\\Applications\\uTaskerSuperGizmo otherwise it may still use some
header files from the original demo project, which can lead to some confusion!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 7/18 6.03.2009

4. Adding New Service Packs

Before starting a new project it is advisable to ensure that you have the latest service pack
installed – installing new service packs during a project development is also possible but it
may involve some checking in the application part to ensure that it is configured to be
compatible and make the most of the new support.

Installing service packs is very easy. The following is a step-by-step guide starting with an
initial installation and following with an upgrade to the latest service pack.

Note that only the latest service pack needs to be installed (unless other instructions are
given on the service pack web site). If there are several service packs available, the newer
ones always include all contents of the intermediate ones as well. All service packs are left
available so that it is always possible to create an intermediate version if ever necessary.

1. The µTasker project is delivered as a zip file. Eg. uTaskerV1.3_LPC.zip. This is
first placed in the directory where all work with the µTasker is going to be performed.

2. Extract the contents by unzipping the file. This requires the password which was
delivered with the file. This will create a file called eg. uTaskerV1.3_LPC containing
the complete µTasker project

3. When you have a new service pack it is also delivered as a zip file. Eg.
uTaskerV1.3_LPC_SP3.zip. To install this, place it at the location of the µTasker
project (eg. uTaskerV1.3_LPC) and ensure that the original zip file is not longer
there (or has been renamed). Then rename the service pack zip file to match the
original zip file name (eg. rename uTaskerV1.3_LPC_SP3.zip to
uTaskerV1.3_LPC.zip

4. Now extract the contents of this zip file using the same password as for the original
project.
You will be asked whether certain files should be overwritten. Reply always with “Yes,
overwrite all”.

Once the extraction has completed, the complete project contents will have been updated
with the service pack. New files will have overwritten older files which required updates but
others will not have been modified.

Note also that the release notes should be checked for special instructions as to how
configurations may have to be changed to use the new features and ensure full code
compatibility. For each Service Pack release there is a thread in the µTasker forum with
some specific details and a list of any known problems and patches – visit
www.uTasker.com/Forum/ to check out these details for your particular target and service
pack.

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 8/18 6.03.2009

5. Adding a New Task to Your Project

The first thing that you will probably want to do is to add a new task of your own to the
project. Therefore we will first add a new C-source file to the project with the following
content.

extern void fnMyFirstTask(TTASKTABLE *ptrTaskTable)
{
 static unsigned char ucCounter = 0;

 fnDebugMsg("Hello, World! Test number ");
 fnDebugDec(ucCounter++, 0, 0);
 fnDebugMsg("\r\n");
}

This is your new task which will write the famous “Hello, World!” with a counter to the
debug output. This requires an active UART to be available (or else a TELNET connection)
but we will assume that a UART output is available – ensure that the define
SERIAL_INTERFACE is active in config.h and the required UART is configured in
app_hw_xxxx.h

(eg. #define DEMO_UART 1 // use UART 1 (the UART connector on
the board))

If you are testing this in the µTasker simulator (which is recommended since it is much
easier and more efficient), ensure that this UART is also mapped to one of the PC’s available
COM ports in app_hw_xxxx.h – eg:

#define SERIAL_PORT_0 '3' // if we open UART channel 0 we simulate
using com3 on the PC

The project will now compile but, if you run it, you will discover that this task never actually
gets scheduled. This is because the scheduler has not been informed that this task exists
and also doesn’t know whether, or when, it should be scheduled.

So you can enter this information and try to get your task to run for the first time after a delay
of 5s and then run periodically every 2s. To do this, open up the project specific file called
TaskConfig.h. Now add the following items:

extern void fnMyFirstTask(TTASKTABLE *ptrTaskTable); // prototype

#define TASK_MY_FIRST_TASK 'x' // my first task's reference

This is the reference which is used to identify the task. It can be any letter, number etc. but
should be unique in the system – check the other task references and avoid any collisions.
Since there is no other task in the reference project with the reference ‘x’ this can be used
safely.

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 9/18 6.03.2009

In the array ctNodes[] add your new task’s reference

const UTASK_TASK ctNodes[] = {
 DEFAULT_NODE_NUMBER, // configuration the single node
 TASK_WATCHDOG,
 ...
 TASK_MY_FIRST_TASK, // add the task to the configuration
 0, // end of single configuration

 // insert more node configurations here if required
 0 // end of configuration list
};

Be sure to put the new task definition before the end of the configuration. The µTasker
supports multiple node configurations and also multi-start with different node configurations,
but these capabilities are not discussed here – we’ll keep it simple since we are interested in
seeing the first new task in operation…

We are almost finished, but first need to add the task characteristics – we have already
specified that there is a task to be basically added but now we have to be more specific. To
do this, add the following to the ctTaskTable[] array

const UTASKTABLEINIT ctTaskTable[] = {
{ "Wdog",fnTaskWatchdog,NO_QUE,0,(DELAY_LIMIT)(0.2 * SEC), UTASKER_GO}, //
watchdog task (runs immediately and then periodically)
 ...
{ "x marks my first task!!", fnMyFirstTask, NO_QUE,(DELAY_LIMIT)(5 * SEC),
(DELAY_LIMIT)(2 * SEC), UTASKER_STOP}, // my first task (runs after a
delay of 5s and then periodically every 2s)
...
};
Note that the task string must start with the task’s reference (x)!!!

After compiling and running this, you should see a first message sent out after 5s and then
every 2s period a further. This is what it looks like in a terminal emulator:

Hello World!! Test number 0
Hello World!! Test number 1
Hello World!! Test number 2
Hello World!! Test number 3
Hello World!! Test number 4
Hello World!! Test number 5
Hello World!! Test number 6
Hello World!! Test number 7
Hello World!! Test number 8
Hello World!! Test number 9
Hello World!! Test number 10
Hello World!! Test number 11
Hello World!! Test number 12
Hello World!! Test number 13
Hello World!! Test number 14

And so on…

This output also operates via TELNET if you have TELNET activated in your µTasker project.
When there is a TELNET connection the debug output will be diverted to this connection
rather than go via the UART output.

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 10/18 6.03.2009

Note also that there is also an introduction to the basic definition of tasks in the document
http://www.utasker.com/docs/uTasker/uTaskerV1.3.PDF

This has shows a very simple task which is scheduled in a periodic fashion. It has not used
an input queue for communication and it has not used any operating system functions apart
from the debug output calls which are supplied as a part of the project. Note also that the
debug output was actually configured by the application task (with user definable parameters
such as speed and parity). The application task (in application.c) was also responsible
for starting the TELNET support if you used that. You will also see - assuming that you
haven’t stripped everything else from the project – that all other demo stuff like the web
server is still there and working. Your new task is also operating alongside this. You can
however work in your new file almost as if it is the only thing there; it is not disturbed by the
other stuff and it doesn’t disturb the operation of the other stuff – this modularity helps greatly
simplify programming and results in cleaner project structures!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 11/18 6.03.2009

6. Second Example – The Task being configured by another Task

In the first example your new task was configured to start after an initial delay and then
periodically. This resulted in a very simple configuration but in many cases more flexibility is
required.

This time we will not configure the task to be scheduled periodically but instead we will get
another task to start it and then let it schedule itself.

To do this, make the following changes to the task characteristics:

{ “x marks my first task!!”,
 fnMyFirstTask,
 NO_QUE,(DELAY_LIMIT)(NO_DELAY_RESERVE_MONO),
 (DELAY_LIMIT)(0), UTASKER_STOP},
 // my first task (a timer has been reserved for its use but not need activated)

As noted in the comment, the task has reserved timer resources for its use later – if the delay
and periodic values are left as 0 it will not receive any timer resources and will thus not be
able to use its own timer later – this saves resource space if no timer is required.

The task will however never be scheduled so its scheduling will have to be started from
another position in the code – we chose the application task (application.c), so place the
following code there, just after the code to open the serial interface:

if (!fnSetNewSerialMode(FOR_I_O)) { // open serial port for I/O
 return; // if the serial port could not be opened we quit
}
DebugHandle = SerialPortID; // assign our serial interface as debug port
uTaskerStateChange(TASK_MY_FIRST_TASK, UTASKER_ACTIVATE);
 // activate the new task
uTaskerMonoTimer(TASK_MY_FIRST_TASK, (DELAY_LIMIT)(3 * SEC), 0);
 // set periodic interval

Now you will see that your new task is scheduled to run when the application task starts (this
is provoked by the call uTaskerStateChange() setting the task state to
UTASKER_ACTIVE). The application task starts after a delay of 100ms so this happens quite
quickly. Since the application task has also configured the UART for debug use it is also
ready for use by your new task as soon as it is scheduled.

The second call uTaskerMonoTimer() configures periodic scheduling of the task with a
period of 3s – note that this occurs because the final parameter is 0, otherwise it will cause
the task to be scheduled after the defined delay once with the event number as specified by
the past parameter.

Furthermore, if the initial uTaskerStateChange() is omitted, your new task will be
periodically scheduled with its first start 3s after the application task changed its
characteristics!!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 12/18 6.03.2009

7. Third Example – Adding a Queue to Your Task and getting it to do a
bit more Work

Up to now your task has used timer resources but has not used an input queue. The input
queue is also a characteristic of the task which is configured in the task table. When a length
of 0 is set the task has no input queue and so uses no resources for this.

Now we will add a small queue which we will then use to communicate with the task (initially
by sending it a simple event) and then for its own timer use.

Please do the following:

Give your task a small queue by modifying its task entry – there are a few queue lengths
defined in uTasker.h but you can in fact use any value here.

{ "x marks my first task!!",
 fnMyFirstTask,
 SMALL_QUEUE,
 (DELAY_LIMIT)(NO_DELAY_RESERVE_MONO),
 (DELAY_LIMIT)(0),
 UTASKER_STOP},

Now instead of starting your new task from the application task, get the application task to
send it a start-up event (we will use a simple interrupt event – which can be defined in
application.h).

Instead of the uTaskerStateChange(), use the following in application.c

fnInterruptMessage(TASK_MY_FIRST_TASK, WAKE_UP_LITTLE_BABY);

In application.h you can add a new event as following (at the bottom of the file). The
event number is in fact not critical, but avoid the value 0 since this is a null-event and will not
wake it up.

#define WAKE_UP_LITTLE_BABY 132

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 13/18 6.03.2009

In your new task’s file, change its content to look like this:

#define OWN_TASK TASK_MY_FIRST_TASK
#define E_TIMER_PERIODIC 1

extern void fnMyFirstTask(TTASKTABLE *ptrTaskTable)
{
 static unsigned char ucCounter = 0;
 QUEUE_HANDLE PortIDInternal = ptrTaskTable->TaskID; // queue ID for task input
 unsigned char ucInputMessage[HEADER_LENGTH]; // reserve space for simple messages

 while (fnRead(PortIDInternal, ucInputMessage, HEADER_LENGTH)) { // check input queue
 switch (ucInputMessage[MSG_SOURCE_TASK]) { // switch on source
 case TIMER_EVENT: // timer event
 if (E_TIMER_PERIODIC == ucInputMessage[MSG_TIMER_EVENT]) {
 fnDebugMsg("Test number ");
 fnDebugDec(ucCounter++, 0, 0);
 fnDebugMsg("\r\n");
 if (ucCounter == 10) {
 fnDebugMsg("Work done!!\r\n");
 ucCounter = 0;
 }
 else {
 uTaskerMonoTimer(OWN_TASK, (DELAY_LIMIT)(1*SEC), E_TIMER_PERIODIC);
 }
 }
 break;

 case INTERRUPT_EVENT:
 if (WAKE_UP_LITTLE_BABY == ucInputMessage[MSG_INTERRUPT_EVENT]) {
 fnDebugMsg("Hello World!!\r\n");
 uTaskerMonoTimer(OWN_TASK, (DELAY_LIMIT)(6*SEC), E_TIMER_PERIODIC);
 }
 }
 }
}

Now you have something a bit more powerful and controllable.

When the application task starts it will send an interrupt event to your new task so that it can
start controlling itself. It reads its input queue (which is used for receiving the interrupt event,
timer events and other messages) and reacts to the event WAKE_UP_LITTLE_BABY by
writing the text “Hello, World!!” and scheduling itself to be woken by a timer event called
E_TIMER_PERIODIC after an initial delay of 6 seconds. When this timer fires it will then start
itself again with a delay of just 1 second and repeat this for a certain amount of time before
terminating.

The new debug output now looks like this:

Hello World!! (immediately after the application task starts)
Test number 0 (after 6s delay)
Test number 1 (after 1s and then every further 1s)
Test number 2
Test number 3
Test number 4
Test number 5
Test number 6
Test number 7
Test number 8
Test number 9
Work done!!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 14/18 6.03.2009

Now your new task has full control over itself and has a structure very suited for state-event
operation: it is woken on events (in this case an interrupt event and timer events) and
otherwise sleeps until the next event occurs.

If the application were to resent the original interrupt event the process would start all over
again!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 15/18 6.03.2009

8. Adding some existing code to your project

Now it may be that you have some code which you would like to add to the project which
looks something like this:

int main(void)
{
 fnInitialiseSomeThings();

 while (1) {
 if (event1 != 0) {
 fnHandleEvent1();
 }
 if (event2 != 0) {
 fnHandleEvent2();
 }
 if (event3 != 0) {
 fnHandleEvent3();
 }
 }
}

Such code don't assume any operating system and is build around polling for events to take
place, which may be flagged from interrupt routines or by other events. Open-source code
modules are also very commonly supplied in this form.

The question is how to allow this code, or several similar modules which are constructed like
this, to operate in a way that all receive processing resources and all can live alongside the
µTasker base project (or similar) with its TCP/IP resources?

The answer is in this case, thankfully, very simple. Since it is based on polling anyway we
simply add each module to a polling task:

extern void fnMyFirstTask(TTASKTABLE *ptrTaskTable)
{
 static iTaskState = 0;

 if (iTaskState == 0) {
 fnInitialiseSomeThings();
 iTaskState = 1;
 }

 if (event1 != 0) {
 fnHandleEvent1();
 }
 if (event2 != 0) {
 fnHandleEvent2();
 }
 if (event3 != 0) {
 fnHandleEvent3();
 }
}

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 16/18 6.03.2009

To operate your new task in polling mode it is simply configured with the state UTASKER_GO.

{ "x marks my first task!!",
 fnMyFirstTask,
 NO_QUE,
 0,
 0,
 UTASKER_GO}, // my first task runs in polling mode

Now we have these modules and the complete demo project working alongside each other.
By making use of the µTasker operating system resources it is usually quite easy to improve
the efficiency of such a task by removing unnecessary polling in favour or event based
operation without greatly changing its basic operation in any way!

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 17/18 6.03.2009

9. Conclusion

This simple introduction has shown how new users can quickly take first steps in starting a
new project, adding a new task and testing some simple but useful basic operation. All of the
new code can still operates alongside the existing demo project resources to enable new
users to also immediately benefit from these integrated resources as part of the new project.

The source to the new code to the examples can be found at the following thread to avoid
the need to type it in when following the document:

http://www.utasker.com/forum/index.php?topic=541.0

Modifications:
- V0.0 31.3.2008 First provisional draft.
- V0.1 6.4.2008 Added instructions for installing service packs.
- V0.2 6.3.2009 Added header, conclusion and notes about target project include paths.

www.uTasker.com µTasker – User Guide – First Steps V1.3

uTaskerV1.3_user_guide.doc/0.2 18/18 6.03.2009

 Appendix A - µTasker Commands use in this Document

extern QUEUE_TRANSFER fnDebugMsg (CHAR *ucToSend);
 // send string to debug interface

extern CHAR *fnDebugDec(signed long slNumberToConvert,
 unsigned char iStyle,
 CHAR *ptrBuf); // take a value and send it as
 decimal string over the debug
 interface or put in buffer

extern void uTaskerStateChange(UTASK_TASK pcTaskName,
 unsigned char ucSetState);
 // change the state of a task

extern void uTaskerMonoTimer(UTASK_TASK pcTaskName,
 DELAY_LIMIT delay,
 unsigned char time_out_nr); // schedule task after
 delay, with timeout event

extern QUEUE_TRANSFER fnInterruptMessage(UTASK_TASK Task,
 unsigned char ucIntEvent);
 // send an interrupt event to a task

extern QUEUE_TRANSFER fnRead(QUEUE_HANDLE driver_id,
 unsigned char *input_buffer,
 QUEUE_TRANSFER nr_of_bytes);
 // read contents of input queue to a buffer

