
Embedding it better...

µTasker Document

µTasker – Cryptography

uTasker_Cryptography.doc/0.04 Copyright © 2018 M.J.Butcher Consulting

www.uTasker.com µTasker – Cryptography

Table of Contents
1. Introduction...3
2. AES...3

2.1 Basics of AES Operation..4
2.2 Configuring and using AES..4
2.3 AES Benchmarks..7

3. SHA-2 (Secure Hash Algorithm 2)...10
3.1 Configuring and using SHA..10

4. Conclusion..12
 ...12

uTasker_Cryptography.doc/0.04 2/12 09/11/18

www.uTasker.com µTasker – Cryptography

1. Introduction

This document describes cryptography functions that are integrated in the µTasker project,
as well as possible hardware acceleration in conjunction with encryption units in some
processors.

The µTasker project encapsulates some common functions in order to achieve high
portability which is not directly dependent on the underlying library used. When possible it
also uses additional capabilities of the processor or manufacturer libraries to optimise the
implementation.

2. AES

A popular symmetric key algorithm is AES (Advanced Encryption Standard), also known as
Rijndeal (its original name). It is a specification for the encryption of electronic data by the US
National Institute of Standards (NIST). It is a block cypher used with a block size of 128 bits
but a choice of key lengths of either 128, 192 or 256 bits.

The AES is defined in the standards

• FIPS PUB 197

• ISO/IEC 18033-3

The input (to be encrypted) is called “plaintext” and the output of the AES encryption process
is called “ciphertext”.

AES algorithms are included in OpenSSL, WolfSSL and mbedTLS libraries, whereby also
assembler code implementations are included for some processors.

Some Coldfire and Kinetis processors contain a CAU (Crypographic Acceleration Unit) which
allows acceleration by using a coprocessor to handle some parts of the AES algorithm, for
which Freescale/NXP supply assembler code implementations for m0+ and m4 Cortex
processors. The unit is referred to as mmCAU in the Kinetis parts

In some newer Kinetis parts there may also be an LTC (Low Power Trusted Cryptography)
hardware block that supports AES. It is based on an accelerator fed and via an input FIFO
and results are retrieved via an output FIFO. This module achieves even better throughput
than the mmCAU.

uTasker_Cryptography.doc/0.04 3/12 09/11/18

www.uTasker.com µTasker – Cryptography

2.1 Basics of AES Operation

A secret key (called the cipher key) of either 128, 192 or 256 bits is available at both
sender and receiver. This is used to generate a encryption key schedules that will
later be used to encrypt messages.

Therefore before use, the key schedules are initialised (once).

AES is a block cipher and the block size is 16 bytes. Each plain text input to be
encrypted to cipher text must be a multiple of the block length, padding being added
if needed to ensure this is true.

Encryption of a 16 byte block results in 16 bytes of cipher output and this is the
smallest entity of encryption (and decryption). However, when data messages of
multiple block lengths is performed it is not usual to simply do multiple block
encryptions (known as ECB – Electronic Code Book) since it isn't considered as a
secure technique and OpenSSL advises against ever using this form. The most
common method is to perform CBC (Cipher Block Chaining) where an initial vector
(IV) is XORed with the data of each plain text block. After encrypting the block the
cipher block output then becomes the IV for operation on the input of the next block.
The CBC decryption process of a message is the inverse: each block is decrypted
and XORed with the original cipher block input to generate the final plain text output
again.

Often the IV is set to zero at the start of each new message, although this weakens
security over using a random IV content. Random IV content is not practical when the
same random seed can not be shared by sender and receiver, but a fixed, non-
zeroed IV could be agreed on.

2.2 Configuring and using AES

The µTasker project's AES interface encapsulates the low level implementation and thus
allows various libraries to be used without the application layer needing to be aware of which
one it actually is.

The following configuration options are supported:

#define CRYPTO_WOLF_SSL - use wolfSSL library code for engine implementation.

#define CRYPTO_MBEDTLS - use mbedTLS library code for engine implementation.

#define CRYPTO_OPEN_SSL - use OpenSSL library code for engine implementation.

#define CRYPTO_AES - Enable AES support.

uTasker_Cryptography.doc/0.04 4/12 09/11/18

www.uTasker.com µTasker – Cryptography

#define MBEDTLS_AES_ROM_TABLES

– when mbedTLS is used the tables used for internal calculations
are calculated rather than being fixed in Flash The resulting
tables are in RAM and so occupy more RAM space but this
cases program space and also operation with tables in RAM
may be faster than in Flash. See comparisons later.

#define OPENSSL_AES_FULL_LOOP_UNROLL

– when OpenSSL is used loops are unrolled in code to improve
performance. See comparisons later.

#define NATIVE_AES_CAU

- when a crypto accelerator (CAU) or LTC (Low power Trusted
Crypto) is available in the processor this define will use it directly
from the optimised µTasker interface rather than as hook in the
library code. See comparisons later.
Library code is not needed in this case for operation on the HW
but a base library should still be selected for use by the
simulator.

#define AES_DISABLE_CAU

- When devices with crypto accelerator (CAU) are used, the HW
acceleration is enabled automatically. This define can be used to
disable it for performance comparisons.

#define AES_DISABLE_LTC

- When devices with low power trusted crypto (LTC) are used,
the HW acceleration is enabled automatically. This define can be
used to disable it for performance comparisons.

In case a device has both mmCAU and LTC the LTC has priority if not explicitly disabled.

The µTasker project includes a single AES initialisation routine as cover function for all
possible underlying library implementations:

extern int fnAES_Init(int iInstanceCommand, // command and instance reference
 const unsigned char *ptrKey, // buffer containing secret key
 int iKeyLength); // the key length to be used (bits)

The following example initialises an instance for subsequent encryption use based on the
passed secret key and its size.

 fnAES_Init(AES_COMMAND_AES_SET_KEY_ENCRYPT, key, 256);

where key[] is a const array of 256/8 bytes in this example.

uTasker_Cryptography.doc/0.04 5/12 09/11/18

www.uTasker.com µTasker – Cryptography

If multiple instances with different keys are to be used each one can be configured in the
same manner. In this case the number of instances in the project (example of 4) can be
defined by

#define AES_INSTANCE_COUNT 4

where this shows 4 instances being reserved (without a define it defaults to 2 instances –
one for encryption and one for decryption).

Eg. second instance being initialised for decryption

 fnAES_Init((AES_COMMAND_AES_SET_KEY_DECRYPT | 1), key, 256);

The initialisation interface can also be used to prime or zero the content of the initial vector.

fnAES_Init(AES_COMMAND_AES_PRIME_IV, iv, 0);

where iv[] is an array of 16 bytes that will be written the the instance's initial vector.

fnAES_Init(AES_COMMAND_AES_RESET_IV, 0, 0); // zero the initial vector

The interface used to encrypt and decrypt data is:

extern int fnAES_Cipher(int iInstanceCommand, // command and instance reference
 const unsigned char *ptrTextIn,// input text (plain or cipher)
 unsigned char *ptrTextOut, // output text (cipher or plain)
 unsigned long ulDataLength);
 // length of text (multiple blocks of 16 bytes)

This is used for both encryption and decryption whereby the length of the data buffer must be
a multiple of 16 bytes otherwise the call will fail with a return value equal to
AES_ENCRYPT_BAD_LENGTH. It is therefore up to the caller to ensure that all plain text fulfils this
requirement by padding to a 16 bytes boundary if necessary.

To encrypt plain text the following call is used:

 fnAES_Cipher(AES_COMMAND_AES_ENCRYPT, plaintext, ciphertext, sizeof(plaintext));

Multiple calls to encrypt plain text will be chained unless a new sequence is defined by
priming the value or calling the encryption with the flag AES_COMMAND_AES_RESET_IV as shown
here (which zeroes the initial vector when the message encryption/decryption starts):

 fnAES_Cipher((AES_COMMAND_AES_ENCRYPT | AES_COMMAND_AES_RESET_IV), plaintext,
 ciphertext, sizeof(plaintext));

uTasker_Cryptography.doc/0.04 6/12 09/11/18

www.uTasker.com µTasker – Cryptography

Decryption is the inverse and always decrypts a multiple of 16 bytes, some possibly being
padding.

 fnAES_Cipher((AES_COMMAND_AES_DECRYPT | AES_COMMAND_AES_RESET_IV),
 (const unsigned char *)ciphertext, recovered, sizeof(ciphertext));

The original plain text is finally in the plain text buffer recovered[].

Warning: When using the mmCAU or LTC the secret keys passed to the initialisation routine
and the destination buffers used during encryption and decryption must be long word
aligned. See the AES256 test code in the µTasker project for a technique to ensure
alignment without issues with compiler portability.

When using the option NATIVE_AES_CAU also the input buffer must be long word aligned to
achieve maximum performance.

2.3 AES Benchmarks

The following tables compare the processing time and memory of various configurations on a
120MHz K64 (Cortex M4 with FPU and mmCAU), with 60MHz bus clock and 24MHz Flash
clock. (GCC compiler with optimisation for size).

Processing times
[Set encryption
key/encrypt 32
bytes/set decryption
key/decrypt 32
bytes] µs units

WolfSSL AES256 mbedTLS AES256
with ROM tables*

mbedTLS AES256
with generated
RAM tables

CAU disabled 15.5 / 73.0 / 61.3 / 71.1 11.5 / 59.7 / 59.6 / 61.5 8.5 / 35.6 / 33.8 / 35.8

mmCAU enabled 5.3 / 17.3 / 5.3 / 16.0 5.0 / 14.7 / 5.1 / 16.5 5.0 / 14.7 / 5.1 / 16.5

*Comparison with 48MHz KL43 (Cortex m0+ without mmCAU): 27.8us/159us/147us/154us

Memory
[Flash / RAM] bytes
units
(not including
application calling
the library
functions)

WolfSSL AES256 mbedTLS AES256
with ROM tables

mbedTLS AES256
with generated
RAM tables

CAU disabled 13'624 / ~250 11'500 / ~250 3'276 / ~9'000

mmCAU enabled 2'506 / ~250 2'470 / ~250 2'470 / ~250

uTasker_Cryptography.doc/0.04 7/12 09/11/18

www.uTasker.com µTasker – Cryptography

It is interesting to note that the mmCAU not only increases performance by a factor of about
4 for encryption and decryption but it can also save almost 10k of Flash space (code and
tables).

When no mmCAU is available there is a further interesting increase in performance by
locating tables in RAM (rather than Flash) and a saving in Flash by generating the content
rather than taking it from a const look-up table. This is due to the faster RAM access possible
in the K64 but there is of course a trade off between the improved performance and the RAM
consumption.

The same measurements for OpenSSL 1.0.2 are shown next:

Processing times
[Set encryption key/encrypt 32
bytes/set decryption
key/decrypt 32 bytes] µs units

OpenSSL AES256 OpenSSL AES256
with option
OPENSSL_AES_FULL_LOO
P_UNROLL

CAU disabled 13.6 / 66.7 / 58.0 / 59.4 13.6 / 53.7 / 58.0 / 51.0

mmCAU enabled 5.1 / 13.6 / 5.3 / 11.3 5.1 / 13.6 / 5.3 / 11.3

Memory
[Flash / RAM] bytes units
(not including application
calling the library functions)

OpenSSL AES256 OpenSSL AES256
with option
OPENSSL_AES_FULL_LOO
P_UNROLL

CAU disabled 12'052 / ~250 16'260 / ~250

mmCAU enabled 2'982 / ~250 2'982 / ~250

If the processor has an mmCAU the AES256 function can also be performed natively (using
the µTasker interface code used to control this). The following figures show the additional
improvement in performance in such a case:

Processing times
[Set encryption key/encrypt 32
bytes/set decryption
key/decrypt 32 bytes] µs units

µTasker AES256 using mmCAU*

mmCAU enabled 4.9 / 8.4 / 4.9 / 8.1

Some Kinetis devices have both mmCAU and LTC (LP Trusted Crypography) and the follow
gives some comparisons with its use:

Processing times [Set encryption key/encrypt 32 bytes/set decryption
key/decrypt 32 bytes] µs units

150MHz K82F using mmCAU 4.5 / 7.0 / 4.5 / 6.5

150MHz K82F using LTC 4.4 / 5.5 / 4.4 / -.-*

uTasker_Cryptography.doc/0.04 8/12 09/11/18

www.uTasker.com µTasker – Cryptography

72MHz KL82 using LTC 3.6 / 9.7 / 3.6 / 15.9 (12.8)*

*When the LTC performs decryption it first derives the decrypt key from the encrypt key meaning that
subsequent block decrypts tend to be faster,

Memory
[Flash / RAM] bytes units
(not including application
calling the library functions)

µTasker AES256 using mmCAU

mmCAU enabled 2'890 / ~250

To get an idea of the expense of the 256 bit AES the processing time for 128 and 196 bit
keys are compared (µTasker interface):

Processing times
[Set encryption
key/encrypt 32
bytes/set decryption
key/decrypt 32 bytes]
µs units

µTasker AES128
using mmCAU

µTasker AES192
using mmCAU

µTasker AES256
using mmCAU

mmCAU enabled 4.5 / 7.0 / 4.6 / 6.9 4.9 / 7.6 / 5.0 / 7.5 4.9 / 8.4 / 4.9 / 8.1

The final comparison is with the mmCAU disabled, based on a typical library configuration:

Processing times
[Set encryption
key/encrypt 32
bytes/set decryption
key/decrypt 32
bytes] µs units

mbedTLS AES128
with ROM tables

mbedTLS AES192
with ROM tables

mbedTLS AES256
with ROM tables

mmCAU disabled 8.4 / 46.8/ 42.5 / 48.5 8.2 / 53.8 / 48.3 / 55.6 11.5 / 59.7 / 59.6 / 61.5

uTasker_Cryptography.doc/0.04 9/12 09/11/18

www.uTasker.com µTasker – Cryptography

3. SHA-2 (Secure Hash Algorithm 2)

A set of six cryptographic hash functions that take an arbitrary length input and generate
digests of 224, 256, 384 or 512 bits in length and used widely in security application
(including TLS) for MACs (Message Authentication Codes) and digital signatures. SHA-1 is a
predecessor of SHA-2 but is being phased out and can't be used for many modern secured
connections. SHA-3 exists but is new and so SHA-2 tends to be still suitable/accepted for
present day communication techniques.

The properties of the hash algorithm is that given the digest (the output) it is extremely
difficult to compute the original input (irreversibility). There should also be only one input that
generates the digest output (multiple inputs giving the same output are called collisions),
whereby this is limited by half of the length and so is often what determines the effectiveness
of the chosen length rather than its reversibility strength.

Message digests are very interesting due to the fact that it allows giving the receiver a piece
of information that proves that the sender is in possession of a particular piece or information
(a secret) without the sender having to divulge this secret. Since only this secret can
generate the particular digest, the sender could later prove the existence of the particular
secret by re-generating the same hash from it (with any other secret or any modified secret it
would be impossible to do this) but the receiver cannot calculate the secret from the received
digest value (irreversibility). Inherently it also ensures that the sender cannot change the
secret from its original since if the sender couldn't later reproduce the same digest value if it
were ever modified.

Pseudocode for SHA-256 is available at many sources in the Internet.

The CAU in the Kinetis / Coldfire devices supports SHA-1 and SHA-256 (one useful and well
excepted length from SHA-2).

Since SHA-256 is very popular it's use and performance are compared in the following
sections.

The SHA-256 digest of an empty string is (32 byte long hex value)

0xe3b0c44298fc1c149afbf4c8996fb92427ae41e4649b934ca495991b7852b855

3.1 Configuring and using SHA

The µTasker project's SHA interface encapsulates the low level implementation and thus
allows various libraries to be used without the application layer needing to be aware of which
one it actually is.

The following configuration options are supported:

#define CRYPTO_WOLF_SSL - use wolfSSL library code for engine implementation

uTasker_Cryptography.doc/0.04 10/12 09/11/18

www.uTasker.com µTasker – Cryptography

#define CRYPTO_MBEDTLS - use mbedTLS library code for engine implementation

#define CRYPTO_OPEN_SSL - use OpenSSL library code for engine implementation

#define CRYPTO_SHA - Enable SHA support.

mbedTLS option:
#define MBEDTLS_SHA256_SMALLER

- produces smaller code at the cost of speed.

#define NATIVE_SHA256_CAU

- when a crypto accelerator (CAU) or LTC (Low power Trusted
Crypto) is available in the processor this define will use it directly
from the optimised µTasker interface rather than as hook in the
library code. See comparisons later.
Library code is not needed in this case for operation on the HW
but a base library should still be selected for use by the
simulator.

#define SHA_DISABLE_CAU

- When devices with crypto accelerator (CAU) are used, the HW
acceleration is enabled automatically. This define can be used to
disable it for performance comparisons.

#define SHA_DISABLE_LTC

- When devices with low power trusted crypto (LTC) are used,
the HW acceleration is enabled automatically. This define can be
used to disable it for performance comparisons.

In case a device has both mmCAU and LTC the LTC has priority if not explicitly disabled.

Single 32 byte SHA-256 LTC mmCAU Software

KL82 72MHz 4.96µs - 120µs

K64 120MHz - 26µs 35µs

K82F 120MHz

uTasker_Cryptography.doc/0.04 11/12 09/11/18

www.uTasker.com µTasker – Cryptography

4. Conclusion

This document has introduced cryptographic functions that are integrated in the µTasker
project, explained their practical usage and given some benchmarks as to performance and
memory costs.

For details discussions of the underlying algorithms of the Crypto functions the interested
reader is referred to academic sources and governing standards where available.

Modifications:

V0.00 10.1.2017:
V0.01 28.1.2017: added mbedTLS and WolfSSL measurements
V0.02 29.1.2017: added OpenSSL and native µTasker CAU measurements
V0.03 9.3.2017: add LTC benchmarks
V0.04 9.11.2018: added further LTC benchmarks and SHA descriptions

uTasker_Cryptography.doc/0.04 12/12 09/11/18

	1. Introduction
	2. AES
	2.1 Basics of AES Operation
	2.2 Configuring and using AES
	2.3 AES Benchmarks

	3. SHA-2 (Secure Hash Algorithm 2)
	3.1 Configuring and using SHA

	4. Conclusion
	

