
Embedding it better...

µTasker Document

µTasker – I2C Support, Demo and Simulation

uTasker_I2C.doc/0.06 Copyright © 2017 M.J.Butcher Consulting

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

Table of Contents
1. Introduction...3
2. Example - EEPROM...3

2.1.Opening the I2C Interface to the EEPROM..3
2.2.Reading Data from the EEPROM...4
2.3.Writing data to the I2C EEPROM..5
2.4.Verifying the contents of the simulated I2C EEPROM..6

3. Example of controlling a RTC via I2C bus...7
4. Transmitter Buffer Space Checking..8
5. I2C Bus Deadlock Recovery...9
6. Slave Mode...10

I2C Slave EEPROM Emulation..10
I2C Slave Output Buffer...12
I2C Slave Simulation..13

7. Conclusion..14
 ...14
 Appendix A – Kinetis Double-Buffered Operation...15
 Appendix B – Adding an I2C Slave Device to the Simulator..18

uTasker_I2C.doc/0.06 2/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

1. Introduction

The µTasker project supports the I2C interface in master mode and is designed for simple
control of local hardware devices such as EEPROM, RTC, Temperature sensors, etc. It
assumes that the device is reliably connected and there is no other master on the bus, since
it handles neither bus contention nor error cases. However it offers an easy to use and
reliable solution in the many cases where this is adequate.

The µTasker project further supports slave mode operation based on either call-back events
or based on queues. This is described in the slave mode section.

2. Example - EEPROM

The µTasker project includes code to configure the I2C interface and read from and write to
an I2C EEPROM (24C01). The simulator supports the device, allowing the user to observe
the way that the code configures and uses the interface, as well as the simulated device
responding to the commands. The methods observed are valid also for various other typical
I2C peripheral devices.

The demo code can be activated by first activating the I2C driver support in config.h
(#define I2C_INTERFACE) and then activating the demo use in application.c
(#define TEST_I2C included in i2c_tests.h).

2.1.Opening the I2C Interface to the EEPROM

The code first opens the I2C interface by using the fnOpen() command – see
fnConfigI2C_Interface() in application.c (included in i2c_tests.h). It is suggested
to place a break point there in the simulator and the sequence can be stepped through for
thorough understand of the code involved and even the hardware interface itself.

 I2CTABLE tI2CParameters;
 tI2CParameters.usSpeed = 100; // 100k
 tI2CParameters.Rx_tx_sizes.TxQueueSize = 64; // transmit queue size
 tI2CParameters.Rx_tx_sizes.RxQueueSize = 64; // receive queue size
 tI2CParameters.Task_to_wake = 0; // no wake on transmission
 I2CPortID = fnOpen(TYPE_I2C, FOR_I_O, &tI2CParameters);

The configuration parameters are passed in the I2CTABLE tI2CParameters. The port is
opened as an I2C interface and a handle returned [QUEUE_HANDLE I2CPortID] which is
later used for all accesses.

uTasker_I2C.doc/0.06 3/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

2.2.Reading Data from the EEPROM

In the case of the EEPROM it is necessary to first perform a write to the device with the
address of the location to be accessed:

static const unsigned char ucSetEEPROMAddress0[] = {ADD_EEPROM_WRITE, 0};

fnWrite(I2CPortID,
 (unsigned char *)&ucSetEEPROMAddress0,
 sizeof(ucSetEEPROMAddress0));

In this example, the address of the EEPROM on the I2C bus is written along with the access
address. This will cause the device to be addressed on the bus and then the desired read
address to be sent. It serves to set the internal pointer in the I2C device for later access.

Immediately following the write, the user can request a read. In the following example 16
bytes are read from the EEPROM, where the internal address starts at 0, as defined by the
previous command.

static const unsigned char ucReadEEPROM[] = {16, ADD_EEPROM_READ, OWN_TASK};

fnRead(I2CPortID,
 (unsigned char *)&ucReadEEPROM, 0); // start the read process of 16 bytes

The write and read are performed using interrupts at the driver level and can be queued by
the user by sending the read immediately after the write. In addition, further commands can
also be queued up to the buffer length limit specified in the I2CTABLE parameters which
were passed to the fnOpen() call.

The read specifies the number of bytes to be read from the I2C device, the read address of
the device (note that the read address and the write address are specified with the LSB at ‘1’
for a read and ‘0’ for the write, giving 0xa5 and 0xa4 for the 24C01 which is being simulated
in the demo) and the task owning the read. The owner task will then be scheduled when the
read has terminated – in this case after collecting 16 bytes from the device.

The read length of zero causes the read to be initiated according to the buffer information
rather than retrieval of available data from the queue’s buffer.

The µTasker project understands the EEPROM type 24C01 (see the file \WinSim\
serial_dev.c for the internal workings and the devices which are supported on the
simulated I2C bus). This means that each interrupt will be processed accordingly and once
the complete message has been collected, the application task will be woken. To see this
when working with the simulator, set a break point at the following line in application.c:

while (LengthI2C = fnRead(I2CPortID, ucInputMessage, MEDIUM_MESSAGE)) {

uTasker_I2C.doc/0.06 4/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

Previous to executing this line due to the task being scheduled by an interrupt event from the
I2C driver, the input queue contents were checked using:

fnMsgs(I2CPortID);

This returns the number of received messages, which will be 1 after all 16 defined bytes
have been read. It doesn’t return the number of bytes in the message since this could cause
the input buffer to be incorrectly read before the reception has completed.

Generally the user knows what to expect when reading since the read and its length was
also commanded by the reading task. In this example, all available bytes are read from the
input buffer, with the available length being returned into LengthI2C. The demo displays
these by writing them to the debug output (serial port, USB-CDC or Telnet, depending on
configuration and availability of these interfaces).

2.3.Writing data to the I2C EEPROM

To demonstrate writing data to the EEPROM two writes are queued. The first writes the byte
0x05 to the EEPROM address 3 and the second writes several bytes from the EEPROM
address 5. The following shows the write of 8 bytes to the address 5 and subsequent
addresses (the address pointer is automatically incremented in the I2C EEPROM device and
this represents a burst write):

static const unsigned char ucSetWriteEEPROM1[] = {ADD_EEPROM_WRITE, 3, 5};
static const unsigned char ucSetWriteEEPROM2[] = {ADD_EEPROM_WRITE, 5,
 3,4,5,6,7,8,9,0xa}; // prepare write of multiple bytes to address 5

fnWrite(I2CPortID,
 (unsigned char *)&ucSetWriteEEPROM1,
 sizeof(ucSetWriteEEPROM1)); // start single byte write
fnWrite(I2CPortID,
 (unsigned char *)&ucSetWriteEEPROM2,
 sizeof(ucSetWriteEEPROM2)); // add multiple byte write

There is no acknowledgement after the writes have been completed (it is assumed that no
writes ever fail due to missing or defective hardware) although a task can be optionally
scheduled on termination by specifying it in I2CTABLE when opening the interface.

uTasker_I2C.doc/0.06 5/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

2.4.Verifying the contents of the simulated I2C EEPROM

The simulated EEPROM device can be viewed as follows from within VisualStudio (µTasker
simulator):

1. Open the file serial_dev.c and search for the structure with the name sim24C01.

2. Double click on the structure and then drag it to a watch window.

3. Expand the structure in the watch window to view its control elements and more
importantly the EEPROM content (ucEEPROM) – expanding this after the write has
been performed shows that the contents are as expected. Subsequent reads from the
EEPROM would then read the present values as is the case of the real device.

This allows user programs to work with (reading, writing) such a device and perform initial
verification that the program is writing the correct data to the correct locations, and even
correctly reacting to the read contents. Once this has been verified, the program can be run
on the real hardware with the knowledge that it has already been checked for correct
functionality.

Figure 1: Screen shot of the EEPROM contents displayed in a VisualStudio watch window. Note that
the contents are as expected after the two writes in the demo program.

uTasker_I2C.doc/0.06 6/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

3. Example of controlling a RTC via I2C bus

A well known I2C based RTC (Real Time Clock) is the Dallas DS1307. The demo project has
been extended to support such a device (from 10.9.2007 - check whether your version
includes the define TEST_DS1307 in application.c and check newer service packs if this
is not the case).

By activating the define TEST_DS1307 in application.c (rather than TEST_I2C) the
DS1307 is initialised to start, if not already active, and to generate a 1Hz output signal. A
read of the internal time structure is then initiated (see fnGetRTCTime() in
application.c). This reads 7 bytes of data from the RTC and copies the present date and
time to a locally formatted structure (stPresentTime).

The 1Hz signal from the RTC is used as a 1Hz interrupt to increment the local time without
need for new accesses to the RTC, whereby the date and time is requested once every 24
hours to ensure that the data is correctly synchronised – this avoids having to calculate such
things as the number of days in a month and leap years.

Normally an application would also support a method of setting a new time and date to the
RTC (eg. by synchronising a local PC time via web server) but such functions can be quite
easily extended by using the I2C driver interface to send the correctly formatted data.

The DS1307 is also included in the I2C device simulator so that its operation can be tested
without the need for such a device connected to the real hardware. When the µTasker
simulator starts, its time and data is set to match the values read from the local PC.

uTasker_I2C.doc/0.06 7/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

4. Transmitter Buffer Space Checking

In some applications where the use of the I2C is intensive it may be important to check that
an application task is not writing faster to an output buffer than the buffer can be emptied by
sending the data to the I2C bus. The driver was therefore extended as from releases dated
later than 1st December 2007 with a check of the output queue space. The following is an
example of it in use:

if (fnWrite(I2CPortID, 0, sizeof(i2c_Msg)) > 0) { // check for room in output
 fnWrite(I2CPortID, i2c_testMsg, sizeof(i2c_Msg));
}

The first write with a null-pointer instead of data causes the driver to return the amount of
space left in the output buffer (plus 1) after a message with the defined length were to be
inserted. As long as the call doesn’t return 0 it means that there is enough space to accept
the advertised message. It is very important to avoid writing data to the I2C interface if it
cannot fit into the output buffer since the buffer contains some formatting (additional
information is entered) which can cause the driver to fail if the formatting gets corrupted due
to content loss.

It is also important to remember that when I2C reads are queued they also occupy transmit
queue space. A read requires also transmission of the I2C device address before the data is
returned and the queue stores this address plus the amount of data to be read (from 1..255
bytes) as well as the owner task’s name. This means that a read also inserts 3 bytes of data
into the I2C output buffer. A read thus also can justify a check of the buffer space if the I2C
interface is being used intensively. The following is an example of how the same type of
check could be performed before queuing a read sequence:

if (fnWrite(I2CPortID, 0, 3) > 0) { // check for adequate room in output queue
 fnRead(I2CPortID, (unsigned char *)&ucReadEEPROM, 0); // command the read
}

uTasker_I2C.doc/0.06 8/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

5. I2C Bus Deadlock Recovery

I2C slaves are don't usually have a reset line and so there is a constant risk that a slave
device can be left in an active state in case the master is reset during bus utilisation. The
result is that the slave may be driving the bus (returning an ACK) when the master attempts
to start new activity. This condition is recognised by the fact that the bus is immediately
detected as busy and it is important to be able to clear this condition in order to restart
activity, rather than the I2C bus being unusable until a power cycle is performed (which will
finally reset the slave devices).

The method used is to not immediately configure the I2C for this purpose but instead to
initialise the pins involved as general purpose I/Os. On first bus utilisation the state of the
SDA line is checked and, if found to be '0', the SCL line is set as an output and toggled at a
rate of 100kHz (generating clocks) until SDA is subsequently detected as '1'. The I2C pins are
then set to their I2C mode so that operation can continue normally.

uTasker_I2C.doc/0.06 9/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

6. Slave Mode

Slave mode support is enabled by the define I2C_SLAVE_MODE in addition to I2C_INTERFACE.

In order to configure for slave mode of operation the speed is set to 0. An additional slave
address (eg. 0xd0 [0xd0 is write address and 0xd1 is read address]) is entered so that the
slave responds only to its address.

 I2CTABLE tI2CParameters;
 tI2CParameters.usSpeed = 0; // slave mode of operation
 tI2CParameters.ucSlaveAddress = OUR_SLAVE_ADDRESS; // slave address
 tI2CParameters.fnI2C_SlaveCallback = fnI2C_SlaveCallback;
 // the I2C slave interrupt callback on reception
 tI2CParameters.Rx_tx_sizes.TxQueueSize = 64; // transmit queue size
 tI2CParameters.Rx_tx_sizes.RxQueueSize = 64; // receive queue size
 tI2CParameters.Task_to_wake = OWN_TASK;
 // wake application task when slave reception is ready
 I2CPortID = fnOpen(TYPE_I2C, FOR_I_O, &tI2CParameters);

An optional slave callback handler can be entered (or 0 if not used). The input and output
queue sizes can be left at 0 if the buffers are not used; for example, the callback takes care
of receiving each byte individually and also each transmission byte, as is shown in the
subsequent EEPROM emulation.

I2C Slave EEPROM Emulation

The following show how simple it is to emulate an EEPROM slave based on callbacks that
are executed on various I2C slave events.

// The function is called during I2C slave interrupt handling so that the application can
// immediately respond in order to realise an I2C slave device
//
static int fnI2C_SlaveCallback(int iChannel, unsigned char *ptrDataByte, int iType)
{
 #define I2C_RAM_IDLE 0 // RAM pointer states
 #define SET_ADDRESS_POINTER 1
 static unsigned char usRAM[256] = {0}; // RAM buffer, initially zeroed
 static unsigned char ucState = I2C_RAM_IDLE; // initially idle
 static unsigned char ucAddress = 0; // RAM address pointer is reset to zero
 switch (iType) { // the interrupt callback type
 case I2C_SLAVE_ADDRESSED_FOR_READ: // the slave is being addressed for reading from
 case I2C_SLAVE_READ: // further reads
 *ptrDataByte = usRAM[ucAddress++]; // return the data and increment the address pointer
 ucState = I2C_RAM_IDLE; // return to the idle state
 return I2C_SLAVE_TX_PREPARED; // the prepared byte is to to be sent
 case I2C_SLAVE_READ_COMPLETE: // complete read is complete
 break;
 case I2C_SLAVE_ADDRESSED_FOR_WRITE: // the slave is being addressed to write to
 // *ptrDataByte is our address
 //
 ucState = SET_ADDRESS_POINTER; // a write is being received and we expect the
 address followed by a number of data bytes
 return I2C_SLAVE_RX_CONSUMED; // the byte has been consumed and nothing is to be
 put in the queue buffer
 case I2C_SLAVE_WRITE: // data byte received
 // *ptrDataByte is the data received
 //

uTasker_I2C.doc/0.06 10/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

 if (ucState == SET_ADDRESS_POINTER) { // we are expecting the address to be received
 ucAddress = *ptrDataByte; // set the single-byte address
 ucState = I2C_RAM_IDLE; // return to data reception
 }
 else {
 usRAM[ucAddress++] = *ptrDataByte; // save the data and increment the address pointer
 }
 return I2C_SLAVE_RX_CONSUMED; // the byte has been consumed and nothing is to be
 put in the queue buffer
 case I2C_SLAVE_WRITE_COMPLETE: // the write has terminated
 // ptrDataByte is 0 and so should not be used
 //
 return I2C_SLAVE_RX_CONSUMED;
 }
 return I2C_SLAVE_BUFFER; // use the buffer for this transaction
}

Each time the callback is executed it is passed an iType value to indicate which event has
taken place. The operation of the emulated EEPROM can be described as follows:

1. When a master addresses the I2C slave as read the callback type
I2C_SLAVE_ADDRESSED_FOR_READ is handled. This occurs after the master has sent
a start condition (or a repeated start) and the slave address matches. It is up to the
callback to decide what the next byte to be read from the slave will be. In the case of
emulated EEPROM the next byte from the EEPROM array is written to the address
pointed to by ptrDataByte and the value I2C_SLAVE_TX_PREPARED returned. The
next byte read by the master will be this value.

2. When the master reads subsequent bytes the type I2C_SLAVE_READ is valid. In the
case of EEPROM emulation the handling is identical to the first byte read.

3. When the master has read the final byte (this is recognised by the fact that the master
doesn't acknowledge the previous byte read from the slave)
I2C_SLAVE_READ_COMPLETE is valid so that the slave knows that no further data is to
be prepared. In the case of the EEPROM emulation this event doesn't need to be
handled. Note that there is no event for a stop condition after a master read since this
is not necessary.

4. I2C_SLAVE_ADDRESSED_FOR_WRITE means that master has addressed the slave in
order to write data to it. This occurs after a start condition (or repeated start) has been
detected, followed by the matching address of the slave being received. The
emulated EEPROM prepares to receive the next byte which will be recognised as its
address pointer.

5. I2C_SLAVE_WRITE is received for each byte (pointed to by ptrDataByte) that is
subsequently received, whereby the first one is interpreted as the address of the
EEPROM's internal memory pointer and following ones as data to be set to this
address (the emulated EEPROM's internal address pointer increments after each
new byte written or read).

6. I2C_SLAVE_WRITE_COMPLETE is received either when the stop condition is detected
after the master has completed the write, or when the slave is subsequently
addressed for read or write again following a repeated start. This event is consumed
by the EEPROM emulator (returns I2C_SLAVE_RX_CONSUMED) but otherwise causes
no specific handling.

uTasker_I2C.doc/0.06 11/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

This has shown how slave device emulation can be achieved simply with a small amount of
code to handle the slave callback events.

I2C Slave Output Buffer

Although not of interest to the EEPROM emulation, other communication implementations
may benefit from making use of the slave mode's output buffer. An example would be to
return a message back to the master after it has written a certain command. This would most
likely be placed in the handling of the I2C_SLAVE_WRITE_COMPLETE and prepare the
response by performing a write.

 case I2C_SLAVE_WRITE_COMPLETE: // the write has terminated
 {
 unsigned char message[10] = {9, 1,2,3,4,5,6,7,8,9};
 fnWrite(I2CPortID, message, sizeof(message));
 }
 return I2C_SLAVE_RX_CONSUMED;

The write sets the message content to the I2C slave's output buffer and will be returned to the
master when it subsequently reads from the slave. This makes it simple to prepare
responses without requiring further callback code to manage its specific transmission details.
When the events I2C_SLAVE_ADDRESSED_FOR_READ and I2C_SLAVE_READ are received the
callback returns I2C_SLAVE_BUFFER, which informs the callback driver that it should not send a
byte set by the callback (which is indicated by the return I2C_SLAVE_TX_PREPARED) but instead
take it from the output buffer.

The master should read the appropriate number of bytes, which may be controlled by the
length to be read either being negotiated previously, being fixed, or being reported in the first
byte in the output buffer, for example. Should the master not read all of the bytes from the
buffer the remaining ones will be read when it reads further data. Once the buffer has been
emptied by the master reads the I2C slave will send 0xff should additional reads be made.

uTasker_I2C.doc/0.06 12/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

I2C Slave Simulation

The operation of the I2C slave can be exercised by using a script file (menu Port sim |
Open Script or Port sim | Repeat last script). The following are examples of
script content to inject various sequences from a bus master.

After a delay of 50ms inject a write on I2C channel 0 to address 0xd0 with 4 bytes of data
(0x55, 0xaa, 0x55, 0xaa) and terminate with a stop condition:

+50 I2C-0 d0 09 55 aa 55 aa

After a delay of 50ms inject a read on I2C channel 0 to address 0xd1, followed by reading 7
bytes of data and terminate with a stop condition:

+50 I2C-0 d1 07

After a delay of 100ms inject a write on I2C channel 0 to address 0xd0 with 1 byte of data
(0x0a). This is NOT terminated by a stop condition but instead the following message will be
performed with a repeated start instead:

+100 I2CR-0 d0 0a

Immediately following the previous command, inject a read on I2C channel 0 from address
0x0d1, followed by a read of 5 bytes and terminate with a stop condition:

+0 I2C-0 d1 05

By combining these simple script commands it is possible to create scripts that allow
extensive testing of the I2C slave operation, exercising complete driver and callback code.

Script commands relevant to I 2 C:

I2C-n – inject start condition, followed by the address and data in the data list, terminated
with a stop condition. I2C channel n.

I2CR-n – inject start condition, followed by the address and data in the data list. No stop
condition is sent, thus allowing repeated starts to be tested. I2C channel n.

uTasker_I2C.doc/0.06 13/25 29/012/17

www.uTasker.com µTasker – I2C Support, Demo and Simulation V1.4

7. Conclusion

This document has illustrated the use of the µTasker I2C driver master interface which allow
queuing of I2C write and read sequences. The µTasker project contains code to show two
common I2C devices in use: an I2C EEPROM and an I2C RTC. Both of these devices are
simulated in the µTasker simulator to allow users to comfortably verify their own code before
moving on to final tests with the real hardware devices.

The document has further described the I2C slave mode of operation which is based on
event callbacks to allow simple emulation of slave devices. The use of the I2C slave mode's
output buffer also makes it easy to prepare messages to be read by a master. Slave
simulation, based on script files, has been discussed.

Modifications:

V0.01 14.1.2007:
- Initial draft version for the V1.3 project

V0.02 24.12.2007:
- Addition of Real Time Clock example and transmission buffer space checking

V0.03 14.3.2009:
- Reformat document with header and table of contents.

V0.04 23.12.2016:
- Update IIC to I2C to correspond with newer code. Add bus deadlock recovery. Add slave
mode description. Add double-buffered Kinetis I2C controller details.

V0.05 20.05.2017:
- Correct EEROM code references.

V0.06 29.12.2017:
- New appendix about adding slave devices to simulator.

uTasker_I2C.doc/0.06 14/25 29/012/17

Appendix A – Kinetis Double-Buffered Operation

Some newer Kinetis processors have an I2C controller that has been modified with double buffered features in order to be able to obtain higher
throughput. Such controller types however have various errors in the design since they don't correctly control the clock line when slaves want to hold
the bus. Furthermore various undocumented behaviour needs to be worked around in order for full operation to be achieved.

The following illustrates typically state and interrupt behaviour that has been observed in practice and results in a successful and compatible
operation. For the tests KL25 (single-buffered design) and KL27 (double-buffered design) parts were connected together in alternating Master and
Slave modes.

The results show that additional start/stop interrupt handling is usually required, plus the fact that repeated starts are only possible when the slave
address is not sent until after the repeated start condition has physically taken place on the bus.

The I2C drivers in the µTasker project automatically respect these requirements in order to allow all Kinetis parts to be used reliably and in a
compatible manner from the user perspective.

Appendix B – Adding an I2C Slave Device to the Simulator

This appendix explains how a new slave device is added to the simulator by illustrating the steps
required to add a MAX6956 so that it can be worked with and visualised.

The MAX6956 is an I2C slave that can act as either a 20-port I/O expander or 28-port LED display
driver with a partially selectable address of 0x80..0x9e (write) and 0x81..0x9f (read); in this
example the HW pin address selection is assumed to be 0x80 (write) / 0x81 (read).

As is typical for many I2C slave devices a set of command registers exist that are addressed in
addition to the slave address. For example, selecting the register address 0x09, allows writing to
this register in order to configure P4, P5, P6 and P7. Other registers allow reading ports and
setting output data to the ports. This register set needs to be emulated - as does the devices bus
address, which requires it to be added to the simulation c-file serial_dev.c.

0x7f registers (some not used) are defined and so the MAX6956 instance can be added quite
simply with

/**/

/* Maxim MAX6956 port-expander/LED driver */
/**/

// Address 0x80
//
typedef struct stMAX6956
{
 unsigned char address;
 unsigned char ucState;
 unsigned char ucRW;
 unsigned char ucCommand;
 unsigned char ucRegs[0x7f];
} MAX6956;

static MAX6956 simMAX6956 = {0x80, 0, 0, 0,
 {0}
};

In case any register values need to be initialised to specific values when the simulation starts, the
states can be added to the local routine fnInitialiseI2CDevices().

Since the MAX6956 should only respond when addressed and be passive when not its state can
be cleared each time another device is addressed by adding

 if (ucAddress != simMAX6956.address) {
 simMAX6956.ucState = 0;
 }

to the local routine fnResetOthers().

The actual active operation is then controlled in the local routine:

unsigned char fnSimI2C_devices(unsigned char ucType, unsigned char ucData);

whereby the extent and accuracy of the simulation depends on this entry – in case just a subset of
the functionality is used only that needs to be added but of course a complete simulation (when
feasible) is always preferred.

There are a small number of events that need to be handled, whereby the most basic is the
address event:

case I2C_ADDRESS:

which is typically handled with

 else if ((ucData & ~0x01) == simMAX6956.address) { // being addressed
 simMAX6956.ucState = 1;
 simMAX6956.ucRW = (ucData & 0x01); // mark whether read or write
 }

Data writes to the addressed slave are then handled by the event:

case I2C_TX_DATA:

and data reads by the event:

case I2C_RX_DATA:

Should there be a special operation taking place after the bus transfer terminates the events

 case I2C_RX_COMPLETE:
 case I2C_TX_COMPLETE:

can also be handled, although these tend to just de-select the previously addressed device.

Specifically for devices of this type the first byte written after its write address is the command byte.
Following bytes may control specific functions that are then dependent on the command. When
reads follow a command the meaning of the read may also be depending on it too. Generally
multiple reads and writes cause data to be read/written to subsequent addresses due to the fact
that the internal address pointer is incremented for each byte transfer.

To program the slave device simulation thus requires knowledge of its command set, which is also
a good exercise to do before programming an actual application based on the chip since it ensures
that its behaviour is indeed appreciated. Should there be a difference in the operation between the
simulation and hardware this can be investigated and adjusted accordingly, once the reason for
the initial misinterpretation is also understood.

In order to illustrate the basic simulation programming the operation of the 28 LED ports will be
analysed in an application driving all of them as individual LEDs. This requires each GPIO to be
configured as output with a specific drive strength and then certain turned on and possibly others
off. First we look at the application code that is used for basic configuration:

static const unsigned char config_leds[] = { MAX6956_WRITE_ADDRESS, PORT_CONFIG_P7_P6_P5_P4,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00 };
fnWrite(I2CPortID, (unsigned char *)config_leds, sizeof(config_leds));

which writes the command 0x09 (the first command of 7 register addresses for the complete port
configuration) followed by 7 0x00 bytes, making use of the auto-increment command address so
that 7 configuration registers can be written with a single address and transfer.

The simplified write simulation of the command register and register content is as follows, which is
typical code for such operations:

 else if (simMAX6956.ucState == 1) { // MAX6956 is being written to
 simMAX6956.ucCommand = (ucData & 0x7f);
 simMAX6956.ucState++;
 }
 else if (simMAX6956.ucState > 1) { // date being written

 unsigned char *ptr = (unsigned char *)&simMAX6956.ucRegs;
 ptr += simMAX6956.ucCommand;
 if (simMAX6956.ucCommand < 0x7f) { // increment the command register
 after each write
 simMAX6956.ucCommand++;
 }
 *ptr = ucData; // set the data
 }

The simulation saves the written byte to the appropriate register and auto-increments the internal
command address up to a maximum value of 0x7f, which is the behaviour described in the
MAX6956's data sheet.

If these register were to be read back again the following application code could be used:

static const unsigned char check_leds[] = { 7, MAX6956_READ_ADDRESS, OWN_TASK };
fnWrite(I2CPortID, (unsigned char *)config_leds, 2); // the address to be read from
fnRead(I2CPortID, (unsigned char *)check_leds, 0); // start the read of 7 bytes

The read simulation code to allow this is similar to the write case (after the read event) and also
increments the command register pointer after each access:

 else if ((simMAX6956.ucRW != 0) && (simMAX6956.ucState == 1)) {
 // MAX6956 is being read from
 unsigned char *ptr = (unsigned char *)&simMAX6956.ucRegs;
 ptr += simMAX6956.ucCommand;
 if (simMAX6956.ucCommand < 0x7f) { // increment the command register
 after each read
 simMAX6956.ucCommand++;
 }
 return (*ptr);
 }

Once the basic register reads and writes are implemented any special behaviour that it controller
or triggered by particular actions can be handled to suit. An example of the behaviour of the
MAX6956 is that its GPIOs or LED outputs can be written/read at multiple registers; one can write
8 bits at a time (P11..P4) by writing to command address 0x44, or one can write just P4 by writing
to control register 0x24.Writes to one register thus also influence the content of other registers,
which the simulation must handle on a register to register basis to achieve correct behaviour. The
actual state of all of the output can however simply be monitored by watching the single register
0x44.

In the case of the example use of the MAX6956 GPIOs as LED drivers it is very useful to be able
to hook them up to the simulation too, which can be performed as follows:

1. In app_hw_xxx.h (where xxx is the processor family being used – eg. app_hw_kinetis.h)
the define

#define _EXTERNAL_PORT_COUNT 1 // 1 external 28 bit port based on a port expander

is added, which informs the simulator that it should extend ports by a further (external) port in
addition to the processor's GPIO ports.

2. When the project I built it will now complain about there being two routines missing:
fnGetExtPortDirection()
and
fnGetExtPortState()

These can also be added to the I2C simulator for the part in question so that the present data
direction of the ports and its present logical state can be returned. The simulator will use these to
display the details and also to drive LED images if configured. For information about configuring
output visualisation see this video: https://youtu.be/x0oe4kscIDI whereby _PORT_EXP_0 can be used
as first external port reference instead of _PORTA or other internal port references. A reference
simulation is shown on the following page, where '0' on the extended outputs means that the
output is driving open-drain low (LED on).

The complete set of LED definitions for this simulation is:

 // '0' '1' input state center (x, y) 0 = circle, radius, controlling port, controlling pin

#define KEYPAD_LED_DEFINITIONS {RGB(255,75,0), RGB(200,200,200), 1, {352, 148, 362, 157 }, _PORTA, DEMO_LED_1}, \
 {RGB(255,128,0),RGB(200,200,200), 1, {352, 186, 362, 194 }, _PORTA, DEMO_LED_2}, \
 {RGB(0,255,0), RGB(200,200,200), 1, {352, 224, 362, 232 }, _PORTA, DEMO_LED_3}, \
 {RGB(20,20,255),RGB(200,200,200), 1, {352, 261, 362, 271 }, _PORTA, DEMO_LED_4}, \
 {RGB(20,20,255),RGB(200,200,200), 1, {457, 26, 478, 41 }, _PORT_EXP_0, PORTA_BIT4}, \
 {RGB(20,20,255),RGB(200,200,200), 1, {457, 42, 478, 59 }, _PORT_EXP_0, PORTA_BIT8}, \
 {RGB(20,255,20),RGB(200,200,200), 1, {457, 60, 478, 75 }, _PORT_EXP_0, PORTA_BIT9}, \
 {RGB(255,20,20),RGB(200,200,200), 1, {457, 76, 478, 91 }, _PORT_EXP_0, PORTA_BIT5}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 101, 478, 114 }, _PORT_EXP_0, PORTA_BIT19}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 115, 478, 131 }, _PORT_EXP_0, PORTA_BIT18}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 140, 478, 155 }, _PORT_EXP_0, PORTA_BIT7}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 156, 478, 171 }, _PORT_EXP_0, PORTA_BIT10}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 172, 478, 184 }, _PORT_EXP_0, PORTA_BIT6}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 193, 478, 210 }, _PORT_EXP_0, PORTA_BIT13}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 211, 478, 228 }, _PORT_EXP_0, PORTA_BIT12}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 229, 478, 243 }, _PORT_EXP_0, PORTA_BIT11}, \
 {RGB(20, 20, 255), RGB(200, 200, 200), 1, { 457, 252, 478, 268 }, _PORT_EXP_0, PORTA_BIT14}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 269, 478, 283 }, _PORT_EXP_0, PORTA_BIT17}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 284, 478, 298 }, _PORT_EXP_0, PORTA_BIT16}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 299, 478, 316 }, _PORT_EXP_0, PORTA_BIT15}, \
 {RGB(20, 20, 255), RGB(200, 200, 200), 1, { 457, 324, 478, 340 }, _PORT_EXP_0, PORTA_BIT20}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 341, 478, 356 }, _PORT_EXP_0, PORTA_BIT23}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 357, 478, 371 }, _PORT_EXP_0, PORTA_BIT22}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 372, 478, 387 }, _PORT_EXP_0, PORTA_BIT21}, \
 {RGB(20, 20, 255), RGB(200, 200, 200), 1, { 457, 397, 478, 410 }, _PORT_EXP_0, PORTA_BIT24}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 411, 478, 427 }, _PORT_EXP_0, PORTA_BIT2}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 428, 478, 440 }, _PORT_EXP_0, PORTA_BIT25}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 441, 478, 459 }, _PORT_EXP_0, PORTA_BIT3}, \
 {RGB(20, 20, 255), RGB(200, 200, 200), 1, { 457, 467, 478, 483 }, _PORT_EXP_0, PORTA_BIT26}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 484, 478, 497 }, _PORT_EXP_0, PORTA_BIT0}, \
 {RGB(20, 255, 20), RGB(200, 200, 200), 1, { 457, 498, 478, 514 }, _PORT_EXP_0, PORTA_BIT27}, \
 {RGB(255, 20, 20), RGB(200, 200, 200), 1, { 457, 515, 478, 530 }, _PORT_EXP_0, PORTA_BIT1}

It is advised to take a look at some existing device simulations that already exist in the
serial_dev.c file, including the state of the MAX6956 one, to see their specific solution in full
detail. These should give adequate inspiration to start and complete further ones as required.

https://youtu.be/x0oe4kscIDI

Simulation example with MAX6956 controlled extended outputs driving an array of LEDs.

	1. Introduction
	2. Example - EEPROM
	2.1. Opening the I2C Interface to the EEPROM
	2.2. Reading Data from the EEPROM
	2.3. Writing data to the I2C EEPROM
	2.4. Verifying the contents of the simulated I2C EEPROM

	3. Example of controlling a RTC via I2C bus
	4. Transmitter Buffer Space Checking
	5. I2C Bus Deadlock Recovery
	6. Slave Mode
	I2C Slave EEPROM Emulation
	I2C Slave Output Buffer
	I2C Slave Simulation

	7. Conclusion
	
	Appendix A – Kinetis Double-Buffered Operation
	Appendix B – Adding an I2C Slave Device to the Simulator

