
 

 

uTasker_IGMP.doc/0.01  Copyright © 2014 M.J.Butcher Consulting 

 

Embedding it better... 

 

 

 

       

 

 

µTasker Document 

µTasker – Multicasting and  
Internet Group Management Protocol (IGMP) 

 

 

          

          

          

          

          

          

          

          

          

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 2/15 14.04.2014 

  

 

Table of Contents 
1. Introduction .....................................................................................................................3 

2. Multicast Addressing .......................................................................................................4 

2.1. Multicast Ethernet Filtering ...................................................................................4 

2.2. Multicasting in a Single Physical Network ...........................................................5 

3. IGMP ..............................................................................................................................5 

3.1. IGMP v1 ..................................................................................................................6 

3.2. IGMP v2 ..................................................................................................................7 

3.3. IGMP v3 ..................................................................................................................8 

4. Implementation and Use ................................................................................................ 10 

5. Testing IGMP and Multi-cast Transmission ................................................................... 13 

6. Conclusion .................................................................................................................... 15 

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 3/15 14.04.2014 

  

1. Introduction 
 

The four main types of Ethernet addressing are 

- Unicast – a single destination address should receive the frame 

- Subnet broadcast – all destination addresses of the subnet should receive the frame 
(net-directed broadcast address) 

- Broadcast – all destination addresses should receive the frame (limited IPv4 
broadcast address is 255.255.255.255) 

- Multicast – a certain group of destination addresses should receive the frame 

 

This document is concerned with multicasting, the fourth of the main addressing types. 
Multicasting works only with UDP, and not TCP, due to the fact that it is not possible to have 
a single TCP connection with multiple peers. It is useful for sending a single frame to multiple 
destinations without any (or only minimum) disturbance to other nodes in the network that 
don’t need to receive the frame. A good example is transmitting video or radio on a network 
whereby only a group of receivers on the network actually want to watch or hear it. These 
types of signal don’t need to be sent over connection oriented links since it makes no sense 
to repeat lost packets – the result of such a packet loss means that there may be a slight 
disturbance in the sound or the picture but nothing serious. Initially no receiver is watching or 
listening but a group of such receivers could decide to do so at any point in time and then 
start receiving the transmissions. The receivers with no interest in watching are not 
disturbed.  

Multicast frames are addressed based on multicast MAC addressing and also multicast IP 
addressing. This addressing is described in the next section. 

The protocol used to manage joining groups is IGMP which is then described in subsequent 
sections. 

This document doesn’t intent to replace RFCs specifying the full details of IGMP but instead 
concentrates on making sense of IGMP as well describing the implementation and use in the 
µTasker project. 

 

Hosts may be level 0, level1 or level 2 hosts. 

- Level 0 hosts don’t support IP multicast activity 

- Level 1 hosts support sending multicast IP datagrams but not receiving such 

- Level 2 hosts have full support for IP multicasting. This type of host requires IGMP 

 

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 4/15 14.04.2014 

  

2. Multicast Addressing 
 

Multicast IP group addresses are class D IP addresses. The first 4 bits of the address are 
‘1110’. This means that all addresses in the range 224.0.0.0 and 239.255.255.255 are 
multicast group addresses. There are some addresses in the range assigned to well-known 
addresses by the IANA (Internet Assigned Numbers Authority) – for example 224.0.0.1 
means “all systems on this subnet – the all-host group”, 224.0.0.2 means “all routers on this 
subnet) and 224.0.1.1 is for NTP (Network Time Protocol). 

When a multicast IP address is used a group of hosts can receive on it. This set of hosts is 
called a host group. How the hosts join the group is discussed later in the IGMP section. 

A multicast MAC address is recognised by the 8th bit of the first byte being set (‘1’). Unicast 
addresses have this bit always clear (‘0’). The MAC broadcast address ff-ff-ff-ff-ff-

ff is therefore a special type of multicast address due to the fact that it is unconditionally 

destined to every node in a network sector. 

The IANA owns an Ethernet address block which is defined partly for multicast use. Its high-
order 24 bits is 00:00:5e, meaning that the multicast MAC address range is from 

00:00:5e:00:00:00 to 00:00:5e:7f:ff:ff. Half of the block is allocated for 

multicasting use and, respecting the MAC multicast bit the actual MAC address range is from 
01:00:5e:00:00:00 to 01:00:5e:7f:ff:ff. 

A multicast IP address cannot be translated to a unique MAC address since there are 
248’720’625 possible IPv4 addresses in the multicast address range but only 8’388’608 MAC 
address. About 30 IP addresses therefore can share a single MAC address and the MAC 
address matching at the receiver is not perfect and requires a higher layer filtering to take 
place in addition, based on the IP address, to ensure that unwanted multicast frame don’t 
reach the higher layer receiver. 

 

2.1. Multicast Ethernet Filtering 

 
Ethernet receivers usually allow frames to be filtered based on whether they are multicast 
frame (the 8th bit of the first byte set ‘1’) which is the minimum multicast filtering that is offered 
(multicast promiscuous). Additional filtering may be offered by allowing a certain number of 
specific multicast addresses to be added; this results in a 30:1 filter accuracy for each MAC 
address for each multicast reception address. More often, however, a multicast hash filter is 
offered which typically gives a 64:1 match accuracy for a multicast address. In any case 
some higher layer (mostly software) filtering is always required. If more multicast addresses 
need to be received than the hardware filter supports the multicast promiscuous mode will 
need to be set to be able to receive them all. 
 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 5/15 14.04.2014 

  

2.2. Multicasting in a Single Physical Network 

 
If the transmitter and all hosts are located in a single physical network they need only know 
what multicast IP address is being used and the transmitter send UDP frames to the IP 
address with the corresponding multicast MAC address. All receivers listen on the multicast 
MAC address and perform a check of the multicast IP address on ach frame passing the 
initial filter. There can be multiple receive processes at the host that use the received frame. 
No host needs to be aware of whether other hosts are listening and also the transmitter 
doesn’t need to know whether there are hosts listening or how many may be listening. 
Whether a process at a host is listening (that is, is a member of the multicast group) is 
managed locally and so is very simple. 

By default, routers at the borders of the physical network will not send multicast frames to 
other networks or out into the Internet. 

The situation gets more complicated when the multicast group can span multiple networks 
and that is where IGMP and routers kick in. This is the discussed in the next section. 

 

 

 

3. IGMP 
 
There are three versions of IGMP 
- IGMPv1 is described in RFC 1112 
- IGMPv2 is described in RFC 2236 
- IGMPv3 is described in RFC 3376 

 

The corresponding IGMP MIB that can be present in SNMP implementations is described in 
RFC 2933. 

IGMP is required when multicast datagrams must pass through multicast routers. Hosts send 
IGMP messages (report) when they want to join a multicast group so that routers can then 
specifically bridge them for them. Hosts may also leave a group at any time and the router 
learns about this when it regularly queries the host as to whether it still has processes 
belonging to the group. 

Each host may have multiple processes receiving datagrams on the multicast address. This 
means that the each datagram is received by multiple processes if these exist. The host only 
reports joining a multicast group once and can have any number of processes listening. The 
host only leaves the multicast group when there are no more processes listening. 

A host may be a member of more than one multicast group at the same time. 

Hosts with multiple interfaces may have multicast group spanning multiple interfaces or 
restricted to a single interface.  

Even when multicast routers allow multicast datagrams to be bridged to further networks the 
transmitter can restrict datagrams to a local physical network by setting the TTL (Time to 
Live) of the IP datagrams to 1. This means that the TTL needs to be controllable by the 
application sending the multi-casted data. 

Reports and queries used by IGMP are always use TTL of 1 since such are restricted to the 
local network. Multicast routers never generate ICMP “time exceeded” errors when the TTL 
reaches zero. 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 6/15 14.04.2014 

  

Although there may often be one host in a network that sends and all others listen, any host 
in a multicast group can send and the datagram be received by all others. If a host has 
further listening processes on the interface its transmissions are looped back to these 
processes by default, although the loop back can be disabled on a per datagram basis. 

Every level 2 host automatically joins the “all-host” group (224.0.0.1) when initialised and 
remains a member as long as it is active. 

 

3.1. IGMP v1 

 

IGMP v0 is obsolete (originally described in RFC 988) so the minimum version is IGMP 
v1. IGMP v1 support two IGMP message: 

- Host Membership Query 

- Host Membership Report 

Queries and reports use a fixed length message with a 20 byte IP header and 8 byte 
IGMP message field. Both types contain a 16-bit checksum and a 32-bit class D IP 
address field, whereby this is unused and zeroes are sent in a membership query 
message. 

Hosts that join a group send a report for each of its group memberships (with one or 
more processes) on the interface and then repeat it once at a random time between 0 
and 10s. This is to increase the probability that it will be successfully delivered since UDP 
is not guaranteed. Each report is sent to the host group’s multicast address with a TTL of 
1. 

Multicast routers use the membership query message on a regular basis to discover 
which hosts groups (still) have members on the particular network interface. Queries are 
sent to the all-hosts address (224.0.0.1) and have a TTL value of 1. 

All hosts that still have multicast group membership(s) prepare a report in response for 
each group membership to a query. The response is sent to the multicast group address 
at a random time between 0 and 10s from the query reception. If a report is received from 
another multicast group member before the local report is sent out it is aborted since the 
multicast router only needs to know that there is still at least one host in the local network 
still in the group. 

As a result, the only traffic on a single physical network without any multicast routers are 
IGMP reports issued when each host initially joins a group. 

If a report delay timer is active when a query is received the query is ignored and the 
original timer left to timeout. 

Group membership of the all-hosts group (224.0.0.1) is never reported. 

IGMP v1 messages are encapsulated in IPv4 frames (using IP protocol number 2) and 
are always 8 bytes in length: 

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |Version| Type  |    Unused     |           Checksum            | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                         Group Address                         | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 7/15 14.04.2014 

  

Version is 1 and two message types exist: 1 for host membership query and 2 for host 
membership report. The group address is set to 0.0.0.0 in queries and to the multicast 
group address in reports. The checksum is calculated over the 8 byte message, with the 
checksum field set to 0 for the calculation (16-bit one's complement of the one's 
complement sum of the 8-octet IGMP message). 

 

3.2. IGMP v2 

 
IGMP v1 allows hosts to join groups but leaving groups is a consequence of not reporting 
continued membership to IGMP queries. IGMP v2 add the capability of terminating 
membership. 

The IP frame makes use of the IP Router Alert option as described in RFC 2113 in its IP 
header (this informs the router that it should examine the packet in more detail since it 
contains information relevant to the router) and makes use of an additional field in the 8 
byte IGMP message (maximum response time), which is used in membership query 
messages. It gives the maximum allowed time to send a responding report in 1/10 
second units (note that this value is fixed at 10s in IGMP v1). 

 
    0                   1                   2                   3 

    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |      Type     | Max Resp Time |           Checksum            | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

   |                         Group Address                         | 

   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 
The version has been removed from the type but is backward compatible with IGMP v1 
due to its version 1 membership report being equivalent to that of IGMP v1. 

- Version 1 Membership Report = 0x12 

- Membership Query = 0x11 (general query or group-specific query) 

- Version 2 Membership Report = 0x16 

- Leave Group = 0x17 

The group address is set to 0.0.0.0 when sending a general query and the queries 
multicast destination address set to the all-hosts address. The group address is set to the 
group address being queried when sending a group-specific query. 

The IGMP v2 leave group message is sent when the last process of a host group leaves 
the group. However, if there are other host groups on the physical network this leave 
message is not sent if another host group caused the last report to be cancelled – that is, 
while the random report wait was active after the last query was received another host 
group send back its report, thus cancelling the local one. 

When the host is operating with IGMP v2 it sends version 1 membership reports, rather 
than version 2 membership reports, in case there was an IGMP v1 router detected on the 
interface in question within the last 400 seconds. If there is an IGMP v1 router present 
the leave group message is not sent on the interface when a host leaves the group. 

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 8/15 14.04.2014 

  

3.3. IGMP v3 

 
IGMP v3 is designed to co-exist with IGMP v1 and IGMP v2. 

 

IGMP is considered to be implemented within the IP module (like ICMP). IGMP v3 is 
concerned with two message types: 

- Membership Query 0x11 

- Version 3 Membership Query = 0x22 

But also supports the IGMP v2 types 0x12, 0x16 and 0x17 for interoperability reasons 

IGMP v3 messages are not fixed length as IGMP v1 and IGMP v2 messages but are 
variable length, depending on the message type: 

 

Membership Query = 0x11 

 

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |  Type = 0x11  | Max Resp Code |           Checksum            | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                         Group Address                         | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      | Resv  |S| QRV |     QQIC      |     Number of Sources (N)     | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                       Source Address [1]                      | 

      +-                                                             -+ 

      |                       Source Address [2]                      | 

      +-                              .                              -+ 

      .                               .                               . 

      .                               .                               . 

      +-                                                             -+ 

      |                       Source Address [N]                      | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

 

Membership Report = 0x22 

 

       0                   1                   2                   3 

       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |  Type = 0x22  |    Reserved   |           Checksum            | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |           Reserved            |  Number of Group Records (M)  | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                                                               | 

      .                                                               . 

      .                        Group Record [1]                       . 

      .                                                               . 

      |                                                               | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                                                               | 

      .                                                               . 

      .                        Group Record [2]                       . 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 9/15 14.04.2014 

  

      .                                                               . 

      |                                                               | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                               .                               | 

      .                               .                               . 

      |                               .                               | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 

      |                                                               | 

      .                                                               . 

      .                        Group Record [M]                       . 

      .                                                               . 

      |                                                               | 

      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 10/15 14.04.2014 

  

 

4. Implementation and Use 
 
IGMP is activated in the µTasker project by enabling the define USE_IGMP. By default IGMP 

v1 is supported. By enabling USE_IGMP_V2 the operation respects IGMP v2 and by enabling 

USE_IGMP_V3 the operation respects IGMP v3 – the highest enabled version is valid but 

with interoperability according to the IGMP specifications. 

The maximum number of hosts that need to be able to exist at the same time and the 
maximum number of processes that each host can have are defined by 
 

#define IGMP_MAX_HOSTS 2                  // host groups (in addition to all-hosts) 

#define IGMP_MAX_PROCESSES 4  // the maximum number of processes in each host group 

 

It is always possible to send a UDP multicast frame, even when no host multicast group 
membership exists. This is performed by using the function: 

 

extern signed short fnSendUDP_multicast(USOCKET SocketHandle, int 

iHostID, unsigned char *dest_IP, unsigned short usSourcePort, 

unsigned short usRemotePort, unsigned char *ptrBuf, unsigned short 

usDataLen, unsigned char ucOptions, unsigned char ucTTL); 

 

Usually ucTTL is set to 1 for multicast UDP transmission so that the frame remains within the 

physical network. ucOptions can use UDP_OPT_SEND_CS to enable a checksum of the 

UDP data content and can also use UDP_OPT_NO_LOOPBACK if the multicast frame is not to 

be looped-back for reception by local host groups on this multicast address and this 
interface. 

iHostID is set to 0 for transmissions that are not related to a host group process – the use 

of this parameter is discussed later and can be used to avoid loop back of the frame to a 
particular local host group process.  

Should the destination IP address that is passed not be a multicast address the function 
returns BAD_MULTICAST_ADDRESS. 

 

No multicast reception is possible when there are no multicast group members. The Ethernet 
multicast reception is disabled initially. To join a multicast group the following function is 
used: 

 

extern int fnJoinMulticastGroup(unsigned char 

ucMulticastGroupAddress[IPV4_LENGTH], USOCKET host_details, void 

(*call_back)(int iHostID, unsigned short usSourcePort, unsigned 

short usRemotePort, unsigned char *ptrBuf, unsigned short 

usDataLen)); 

 

The return value is a unique reference to the host group and process that was added to the 
multicast group. This reference should be remembered so that a leave can be made at a 
later point in time. The first time a host group joins the Ethernet multicast reception is 
enabled on the all-hosts address as well as the group address (usually this requires setting 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 11/15 14.04.2014 

  

group multicast hash entries in the Ethernet hardware but the exact details may be 
dependent on the Ethernet controller used). If the host group belongs to multiple interfaces 
the multicast reception is enabled on all. The interfaces that the all-hosts group can receive 
on is defined by IGMP_ALL_HOSTS_INTERFACES. This is not needed when there is only 

one interface but needs to be defined form multiple-interface operation. The value 
addInterface(DEFAULT_IP_INTERFACE) would enable reception on only the default, 

but multiple interfaces can be used. 

 

 

To leave the group the following function is used: 

extern int fnLeaveMulticastGroup(int iHostID); 

When a host group leaves membership (no more processes active) it also disables the 
multicast reception filter that it was using, if the same filter is not still used by another 
remaining group. If the removal of the host group leaves no further host groups active also 
the all-host multicast reception filter is disabled. 

 

 

The call-back function passed with the fnJoinMulticastGroup() call is the call-back 

used to handle multicast UDP data reception for the process. If there are multiple processes 
belonging to a host group each of the process call-back functions are used to pass the data 
to each of the processes. The order of the call-back handling depends on the order the 
processes were added but may change during use when processes are removed and added 
again (generally the order of the reception being passed to multiple processes should 
therefore not be relied on). 

The IGMP module sends reports when a host group is created and responds to queries as 
long as there is still at least one process in a host group. Random timer delays are 
respected, whereby the IGMP task’s mono-stable timer is used for the function as long as no 
more than 1 host is defined. As soon as more than one host is defined global mono-stable 
timers are used instead. 

An example of joining two multicast groups is given here, whereby two processes join the 
first host group and one the second: 

 

static int iHostGroupID[3]; 

static unsigned char ucMulticastGroupAddress1[IPV4_LENGTH] = {224,10,10,10}; 

static unsigned char ucMulticastGroupAddress2[IPV4_LENGTH] = {224,0,0,251}; 

 
iHostGroupID[0] = fnJoinMulticastGroup(ucMulticastGroupAddress1, 

(defineNetwork(DEFAULT_NETWORK) | defineInterface(DEFAULT_IP_INTERFACE)), 

fnMulticastProcess1)                             // join a multicast group 

iHostGroupID[1] = fnJoinMulticastGroup(ucMulticastGroupAddress1, 

(defineNetwork(DEFAULT_NETWORK) | defineInterface(DEFAULT_IP_INTERFACE)), 

fnMulticastProcess2);                            // join a multicast group 

iHostGroupID[2] = fnJoinMulticastGroup(ucMulticastGroupAddress2, 

(defineNetwork(SECOND_NETWORK) | defineInterface(DEFAULT_IP_INTERFACE)), 

fnMulticastProcess3);                            // join a multicast group 

 

 

The definitions of the network and interfaces are optional and 0 can be set when there is only 
one network and one interface in the system. 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 12/15 14.04.2014 

  

The following shows one process leaving the group later: 

 

fnLeaveMulticastGroup(iHostGroupID[1]); 

 

 

A simple example of a process call-back is: 

 

static void fnMulticastProcess3(int iHostID, unsigned short usSourcePort, unsigned 

short usRemotePort, unsigned char *ptrBuf, unsigned short usDataLen) 

{ 

    typedef struct stMULTICAST_MESSAGE 

    { 

        UDP_HEADER     tUDP_Header;       // reserve header space 

        unsigned char  data_content[10];  // reserve message space 

    } MULTICAST_MESSAGE; 

    MULTICAST_MESSAGE msg; 

    uMemset(msg.data_content, 0xaa, sizeof(msg.data_content)); 

                                                    // test some message content 

    fnSendUDP_multicast((defineNetwork(SECOND_NETWORK) | 

defineInterface(DEFAULT_IP_INTERFACE)), iHostID, ucMulticastGroupAddress2, 0x6543, 

0x3456, (unsigned char *)&msg, sizeof(msg.data_content), (UDP_OPT_SEND_CS), TTL_1); 

} 

 

 

This shows a multicast UDP message being sent on reception of a multicast UDP data 
packet (the reception data is not actually used). To be noted is the fact that the call-back 
process’s host ID is passed together with the reception frame. This is then passed to 
fnSendUDP_multicast(), which is important since it stops the transmission from being 

looped back to the same process – if the option UDP_OPT_NO_LOOPBACK is not set the 

transmission is still looped back to all other processes in the local host group. 

  

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 13/15 14.04.2014 

  

5. Testing IGMP and Multi-cast Transmission 
 

The command line interface of the µTasker project (on UART, USB-CDC or Telnet) contains 
a simple IGMP and multicasting test interface in the LAN menu: 

hosts               List multicast host groups 

join                [multicast] join group 

leave               [host ID] leave group 

multi               <ip> send test frame 

 

Initially there are no multicast host group members and the command “hosts” will inform of 

this fact. 

It is possible to send a test multicast message using “multi” followed by a valid multicast IP 

address. This creates a small UDP packet and transmits it to this address. 

Using the “join” command a process can be added to the multicast host members. Each 

process is assigned with a simple call-back that displays when it has received data (including 
its host ID). When a new host group is defines the IGMP process will add this to the group 
and send an initial report. Further processes can be added to the same IP multicast group up 
to the maximum processes that a single group can contain. Further host groups can be 
added (with different multicast IP address) up to the maximum host groups defined. 

When there is a single processor, or multiple processes, in a host group each one will 
receive a copy of all received multicast UDP data for it. 

The command “leave” is used, together with the ID of the host/process to free the process 

from the host group. If there are no further processes belonging to the host group, the host 
becomes free and a leave is sent when IGMP v2 is used. 

The following shows a simple test session: 

Test Interface commands and response Notes 

#hosts 

No host groups exist 

 

#join 224.0.0.35 

Joined as host/processor ID:  0x0002 

 

 

join 224.1.2.3 

Joined as host/processor ID:  0x0001 

 

 

 

#hosts 

Host group with 1 Process(es): 

 0x0001 

on multicast address 224.1.2.3 

Host group with 1 Process(es): 

 0x0002 

on multicast address 224.0.0.35 

 

 

Initially there are no host 

groups 

 

A first process is added, 

which creates a host group 

on 224.0.0.35 (a join report 

is sent) 

 

As second host group joins 

on 224.1.2.3 (a join report 

is sent) 

 

 

 

The host listing shows that 

there are two host group 

members and each has one 

process 

 

 

 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 14/15 14.04.2014 

  

#join 224.1.2.3 

Joined as host/processor ID:  0x0101 

 

 

 

#multi 224.0.0.35 

Mult-Rx: 0x0002 0x55 

 

 

 

 

#multi 224.1.2.3 

Mult-Rx: 0x0001 0x55 

Mult-Rx: 0x0101 0x55 

 

 

#hosts 

Host group with 2 Process(es): 

 0x0001 

 0x0101 

on multicast address 224.1.2.3 

Host group with 1 Process(es): 

 0x0002 

on multicast address 224.0.0.35 

 

 

#leave 1 

Process freed 

 

 

 

 

#multi 224.1.2.3 

Mult-Rx: 0x0101 0x55 

 

 

 

#hosts 

Host group with 1 Process(es): 

 0x0101 

on multicast address 224.1.2.3 

Host group with 1 Process(es): 

 0x0002 

on multicast address 224.0.0.35 

 

#leave 101 

Group left! 

 

 

 

 

 

 

#leave 2 

Group left! 

 

A second process is added to 

the host group on 224.1.2.3 

(no join report is sent) 

 

 

When a multicast 

transmission is sent to 

224.0.0.35 it is received by 

the since process on this 

host group 

 

A multicast transmission 

sent to 224.1.2.3 is 

received by all processes in 

this host group 

 

 

Here the 3 processes (and 

their IDs) are seen, in two 

host groups 

 

 

 

 

 

 

One process is freed form 

the host group on 224.1.2.3 

using its host/process ID 

0x0001 

 

 

A reception on this 

multicast IP address I snow 

received by the remaining 

process only 

 

 

 

 

 

 

 

 

 

When process ID 0x0101 is 

freed it causes the host 

group to leave the group (no 

more processes remaining) – 

this causes an IGMP v2 leave 

to be sent if the conditions 

for it are fulfilled 

 

The final process leaves the 
final group – again an IGMP 

v2 leave is sent 



   
www.uTasker.com µTasker – Multicasting and IGMP  

 

uTasker_IGMP.doc/0.01 15/15 14.04.2014 

  

 

 

#hosts 

No host groups exist 

 

 

No host groups exist and so 

no reports are returned when 

an IGMP router sends 

queries. 

 

 

 

  

6. Conclusion 

 

IGMPv1 and IGMP v2 explained. 

Implementation of IGMP v1 and v2 operation completed – supporting multiple networks and 
interfaces. 

Work in progress- 

- Add IGMP v3 plus implementation 

- Add multiple network and multiple interface examples 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modifications: 

 
V0.00 30.03.2014: 
- Initial draft version 

V0.01 14.04.2014: 
- Second draft version  

 


