
Embedding it better...

µTasker Document

µTasker – MQTT/MQTTS

uTasker_MQTT.doc/V1.00 Copyright © 2018 M.J.Butcher Consulting

www.uTasker.com µTasker – MQTT

Table of Contents
1. Introduction...3
2. Enabling MQTT..4
3. MQTT Operation and Interface..5

3.1 Connecting to/Disconnecting from the Broker...5
3.2 Subscribing to/Unsubscribing from a Topic...10
3.2 Messages and Receiving Published Messages...12

4. Quality of Service (QoS)...14
4.1 QoS 0 (Fire and Forget)...14
4.2 QoS 1 (Acknowledged Delivery)...15
4.3 QoS 2 (Assured Delivery)..16

5. Conclusion..16

uTasker_MQTT.doc/1.00 2/16 12/03/18

www.uTasker.com µTasker – MQTT

1. Introduction

This document discusses the MQTT (Message Queuing Telemetry Transport)
implementation in the µTasker project.

MQTT is an ISO standard (ISO/IEC PRF 20922) publish-subscribe based protocol that
operates over TCP/IP whereby multiple clients can connect to a server (known as the broker)
on the TCP port 1883 [or securely on port 8883] and subscribe to topics, publish their own
messages and receive topic messages published from other clients.

MQTT is said to have been designed for a small code footprint and the µTasker
implementation requires around 4k code and 1k of RAM for the protocol layer and a simple
client interface.

The µTasker project also includes secure MQTT (over TLS), which is referenced to as
MQTTS. Since the underlying MQTT operations are essentially identical over TCP/IP or
secure socket layer MQTTS details are only mentioned when there is something of relevance
to it – otherwise all MQTT discussions can be considered to be valid for both connection
types.

The document is very practical of nature in that it illustrates how to use the features on
MQTT through concrete operations and observations and then introduces and discusses
interesting or useful points as they come up in each case. For a more formal review of the
MQTT protocol its specification and various standard texts can be used.

uTasker_MQTT.doc/1.00 3/16 12/03/18

www.uTasker.com µTasker – MQTT

2. Enabling MQTT

MQTT can be enabled with the define

USE_MQTT_CLIENT

in the project configuration file config.h as long as TCP/IP is also enabled in the project
(operating over Ethernet, USB RNDIS or other TCP/IP enabled connections).

When enabled it adds a command line interface that can be used to immediately establish
connections to a broker and verify various actions, such as subscribing to topics, publishing
messages and viewing topic messages from other devices.

Secure MQTTS support is optionally enabled with the additional define

SECURE_MQTT

and client side authentication support optionally added using the define

SUPPORT_CLIENT_SIDE_CERTIFICATE

The following shows the MQTT command line menu (available on the UART debug interface,
USB-CDC or Telnet):

FTP/TELNET/MQTT
===================
up go to main menu
mqtts_con Secure con. to MQTT broker [ip]
mqtt_con Connect to MQTT broker [ip]
mqtt_sub Subscribe [topic] <QoS>
mqtt_top List sub. topics
mqtt_un Unsubscribe [ref]
mqtt_pub Publish <"topic"/ref> <QoS>
mqtt_pub_l Publish (long) <"topic"/ref> <QoS>
mqtt_dis Disconnect from MQTT broker
help Display menu specific help
quit Leave command mode

whereby mqtts_con is only available when configured for secure operation.

Using these commands all MQTT operations can be tested and the command line interface
code also serves as reference for program control of application layer use of the protocol and
its capabilities.

The following optional configuration parameters can be used to override basic settings if
needed, whereby their specific use is described later in the document:

#define MQTT_KEEPALIVE_TIME_SECONDS 300 // the keep alive time announced to the
broker when the connection is established
#define MQTT_MAX_SUBSCRIPTIONS 8 // MQTT module manages up to this many subscriptions
#define MQTT_MAX_TOPIC_LENGTH 16 // MQTT module stores individual topic strings up to
this length

uTasker_MQTT.doc/1.00 4/16 12/03/18

www.uTasker.com µTasker – MQTT

3. MQTT Operation and Interface

This chapter discusses the command line interface operation in order to test various aspects
of MQTT operation. In each case the application interface is also explained so that the same
operations can be easily achieved from general application code.

The Mosquitto test broker at test.mosquitto.org was used for these tests, whereby its
fixed IPv4 IP address is used for connection. DNS can be used to first used to discover the
IP address of any other brokers to be tested with.

3.1 Connecting to/Disconnecting from the Broker

#mqtt_con 37.187.106.16
MQTT client Connecting...
#MQTT connected

mqtt_dis
Disconnecting...
#MQTT closed

The connection and disconnection parts are quite standard TCP connections and closes (in
case of a secure connection the connection will involve the TLS handshake but, apart from
additional delays, the user interface will see the same general behaviour).

Once the TCP connection itself has been established the MQTT connection itself is
established by the client sending the MQTT Connect command, which the broker will
respond to with a Connect Ack (which causes the “MQTT connected” message).

The MQTT connection is disconnected by using a simple TCP close sequence (which
causes the “MQTT close” message).

The MQTT connection between the initial connection and its termination is a persistent TCP
connection and so could remain in the established state forever. If we however look at the
Wireshark recording of a reference connection that remains active for 5 minutes it is seen
that there are regular MQTT Ping messages being sent by the client, which are used to
confirm to the broker that the connection is still active, whereby the broker could close the
connection is there is no activity for a certain period of time.

uTasker_MQTT.doc/1.00 5/16 12/03/18

www.uTasker.com µTasker – MQTT

This first recording shows both TCP and MQTT frames and the following only MQTT frames
by filtering out all non-MQTT messages – in the following discussions the MQTT filtering is
used unless there is a particular TCP layer interest.

To get an initial idea of the MQTT protocol itself it is very useful to use the MQTT
interpretation feature of Wireshark, whereby the following shows the content of the MQTT
Connect Command:

uTasker_MQTT.doc/1.00 6/16 12/03/18

www.uTasker.com µTasker – MQTT

and the next the content of the broker's MQTT Connect Ack:

And in similar fashions, the Ping Request and Ping Response:

Ping Request

Ping Response

We notice that the client specifies a keep alive time of 300s*, and then sends pings (when no
other activity) at a faster rate to ensure that the connection doesn't timeout when the device
is still in good heath.
As well as allowing the broker to detect a device that has been powered down (not no longer
contactable) this ping mechanism also enables the device to detect whether the broker is still
available – if the broker doesn't respond to a ping (after the TCP layer has attempted
delivery a number of times if needed) the broker can be declared as being no longer on line.

*See optional parameter MQTT_KEEPALIVE_TIME_SECONDS

uTasker_MQTT.doc/1.00 7/16 12/03/18

www.uTasker.com µTasker – MQTT

In the initial connection message there is a field called “Connect Flags” that needs to be
mentioned since it defines some basic, but important, properties of the MQTT connection
being established. This is how it looks in this example case:

In this case the Clean Session Flag is set as standard since it ensures that the device's
messages at the broker are deleted when the connection terminates.

The QoS (quality of service) level is set to 0, which means that the MQTT will not guarantee
delivery but only ensure that a single attempt is made. This is the basic QoS used by the
connection but doesn't restrict higher levels being used for individual messages during the
connection session.

Finally the application interface can be shown that allows connection. The code source is
available in the file debug.c, which controls this MQTT menu operation, whereby the code
shown here is sometimes a simplified version of it to focus on the relevant points.

 unsigned long ulModeFlags = (UNSECURE_MQTT_CONNECTION |
 MQTT_CONNECT_FLAG_CLEAN_SESSION);
 unsigned char ucDestinationIP[] = {37, 187, 106, 16};
 if (fnConnectMQTT(ucDestinationIP, fnMQTT_callback, ulModeFlags) == 0) {
 fnDebugMsg("Connecting...");
 }
 else {
 fnDebugMsg("Can't connect!");
 }

Here is is seen that the connection flags such as MQTT_CONNECT_FLAG_CLEAN_SESSION are
defined by the application when it connections.
In case the connection is to be performed over a secure socket SECURE_MQTT_CONNECTION can
be used instead of UNSECURE_MQTT_CONNECTION (which is the default if not explicitly specified).

We note that a call-back is specified which is required to respond to various event during
general MQTT session operation. The complete callback is reproduced here as reference
throughout this document:

uTasker_MQTT.doc/1.00 8/16 12/03/18

www.uTasker.com µTasker – MQTT

static unsigned short fnMQTT_callback(signed char scEvent, unsigned char *ptrData, unsigned long
ulLength, unsigned char ucSubscriptionRef)

{
 CHAR *ptrBuf = (CHAR *)ptrData;
 int iAddRef = 0;
 switch (scEvent) {
 case MQTT_CLIENT_IDENTIFIER:
 ptrBuf = uStrcpy(ptrBuf, temp_pars->temp_parameters.cDeviceIDName); // supply a string to be
used as MQTT device identifier - this should be unique and normally contain only characters 0..9, a..z,
A..Z (normally up to 23 bytes)
 break;
 case MQTT_WILL_TOPIC: // optional connection string fields
 case MQTT_WILL_MESSAGE:
 case MQTT_USER_NAME:
 case MQTT_USER_PASSWORD:
 ptrBuf = uStrcpy(ptrBuf, "string");
 break;
 case MQTT_CONNACK_RECEIVED:
 fnDebugMsg("MQTT connected\r\n");
 break;
 case MQTT_SUBACK_RECEIVED:
 fnDebugMsg("MQTT subscribed");
 iAddRef = 1;
 break;
 case MQTT_UNSUBACK_RECEIVED:
 fnDebugMsg("MQTT subscribed");
 iAddRef = 1;
 break;
 case MQTT_PUBLISH_ACKNOWLEDGED:
 fnDebugMsg("MQTT published - QoS");
 fnDebugDec(ulLength, 0);
 iAddRef = 1;
 break;
 case MQTT_PUBLISH_TOPIC: // add a default publish topic
 ptrBuf = uStrcpy(ptrBuf, "xyz/abc");
 break;
 case MQTT_PUBLISH_DATA:
 {
 static unsigned char ucDataCnt = 0;
 int i = 0;
 ptrBuf = uStrcpy(ptrBuf, "abcd"); // add string content
 while (i++ < usPubLength) { // plus some binary content
 *ptrBuf++ = ucDataCnt++;
 }
 }
 break;
 case MQTT_HOST_CLOSED:
 case MQTT_CONNECTION_CLOSED:
 fnDebugMsg("MQTT closed\r\n");
 break;
 case MQTT_TOPIC_MESSAGE:
 fnDebugMsg("Message (");
 fnDebugDec(ulLength, 0);
 fnDebugMsg(")");
 iAddRef = 1;
 break;
 }
 if (iAddRef != 0) {
 fnDebugMsg(" [");
 fnDebugDec(ucSubscriptionRef, 0);
 fnDebugMsg("]\r\n");
 }
 return (unsigned short)((unsigned char *)ptrBuf - ptrData);
}

MQTT application callback reference

uTasker_MQTT.doc/1.00 9/16 12/03/18

www.uTasker.com µTasker – MQTT

It may have been noticed that in the connect message the device sent a string to indicate its
Client ID (“KINETIS”), which is the first reference to the use of the application call back to
define specific details. When the call-back receives the event MQTT_CLIENT_IDENTIFIER it can
enter its own ID as it desires, which is then appropriately inserted into this message.

Beware that each device should have a unique client ID. Trying to connection a second
device with the same Client ID as another one will tend to cause the broker to close the
connection to the client with the same ID that was connected to it first.

3.2 Subscribing to/Unsubscribing from a Topic

MQTT is subscription oriented and so it is usual for a client to subscribe to one or more
topics. Once subscribed this client will then receive any message published for this topic,
whether it be published by another client or itself.

The client is also free to later unsubscribe form topics that no linger interest it, after which no
more topic messages will be sent to it by the broker.

The following shows the command line interface being used to subscribe to two topics
(“uTasker/test1” and “uTasker/test2”) and then unsubscribing from them.

Beware that topics are case sensitive!

We note that a QoS is assigned to each individual topic which means that the subscription
process itself is performed with this level. QoS 2 and QoS 1 are used, which differ in the
guarantee of delivery made. QoS 2 means that it is to be guaranteed to be delivery to the
broken a single time whereas QoS 1 is guaranteed to be delivered “at least once” but not
excluding that it may be delivered a multiple number of times.

See the chapter on QoS for some examples of MQTT message exchanges with the three
levels (0, 1 and 2).

#MQTT subscribed [1]
mqtt_sub uTasker/test1
Subscribing (ref=1)...
#MQTT subscribed [1]
mqtt_sub uTasker/test2 1
Subscribing (ref=2)...
#MQTT subscribed [2]
mqtt_un 2
Unsubscribing...
#MQTT subscribed [2]
mqtt_un 1
Unsubscribing...
#MQTT subscribed [1]

uTasker_MQTT.doc/1.00 10/16 12/03/18

www.uTasker.com µTasker – MQTT

The application code responsible for subscribing to a topic may look as follows:

 int iSubscriptionReference;
 unsigned char ucQoS = 2;
 iSubscriptionReference = fnSubscribeMQTT("TEST1", ucQoS);
 if (iSubscriptionReference >= 0) {
 fnDebugMsg("Subscribing (ref=");
 fnDebugDec(iSubscriptionReference, 0);
 fnDebugMsg(")...");
 }
 else {
 fnDebugMsg("MQTT error!");
 }

where it is seen that it defines the (default) QoS per topic, can specify directly the topic name
and received a topic reference (for later use with respect to all messages received belonging
to this topic or for publishing ones own messages related to it).

It is worth noting that the application doesn't need to pass the topic with the subscription call
but can instead insert it via the call-back each time the event MQTT_PUBLISH_TOPIC is received
(during the subscription process). In the second case a null pointer is passed instead and the
MQTT module doesn't keep a local copy of the topic string and calls back the application
each time it needs to know it.

The MQTT management interface associates the defined QoS with the subscription for later
(default) use and can manage up to MQTT_MAX_SUBSCRIPTIONS* active subscriptions. It can save
topic strings of up to MQTT_MAX_TOPIC_LENGTH* length each.

When unsubscribing, the subscription reference number is used, whereby the unsubscribe
operation will be performed using the same QoS as used for its subscription.

 if (fnUnsubscribeMQTT(2) >= 0) { // unsubscribe from topic ref. 2
 fnDebugMsg("Unsubscribing...");
 }
 else {
 fnDebugMsg("MQTT error!");
 }

The command “mqtt_top” allows listing topics presently subscribed to, for example:

mqtt_top
Reference:1 QoS:2 Topic:uTasker/test1
Reference:2 QoS:1 Topic:uTasker/test2
Reference:3 QoS:2 Topic:uTasker/test3

*See optional parameters MQTT_MAX_SUBSCRIPTIONS and MQTT_MAX_TOPIC_LENGTH

uTasker_MQTT.doc/1.00 11/16 12/03/18

www.uTasker.com µTasker – MQTT

3.2 Messages and Receiving Published Messages

The command line interface allows testing publishing predefined test message – either of
short length or of a length almost filling up a standard TCP buffer (around 1k bytes). The
message can be sent with a defined QoS and be sent to a specific topic. If sent to a topic
that we are subscribed to we expect to receive the message back to ourselves from the
broker too!

Examples of publishing messages are as follows:

mqtt_pub "uTasker/test1" 1

which publishes a test message to the topic uTasker/test1 with QoS of 1. Note that the
topic string needs to be enclosed in “...” in this command and a missing QoS value will cause
QoS 2 to be used.

mqtt_pub_l "uTasker/test1" 0

would publish a long message to the same topic but using QoS 0 instead.

When the publish process completes the call back displays the fact along with details of the
QoS and reference to a local subscription (0 mean that it is a one-off topic publication since
we are not subscribed to the topic):

MQTT published - QoS2 [0]

The MQTT broker will pass on the topic message to any, and all, devices subscribed to it and
a device receiving such a topic message will display the fact that it has as follows:

Message (14) [1]

The message length is 14 bytes in this case and the reception is on the subscription
reference 1. This then allows the application callback to simply associate the message to a
particular topic and then it can parse the content accordingly, whereby we note that the
message content itself is not defined by the MQTT specification and can be either ASCII or
binary. Depending on the overall application's communication between devices the content
could be details about local measurements (values from sensors) or commands that one
device sends to others.

A long test message would look like:

Message (1028) [3]

where it is seen that the message content is approximately 1k byte instead – in this case for
topic reference 3.

If a device is subscribed to a topic that it sends a message to it can use its subscription
reference instead as the topic string. For example

mqtt_pub 1 2

will cause a message to be published to the topic of subscription reference 1 with QoS 2.

If the QoS is not specified the value used will default to that in the subscription characteristics
(the QoS defined when subscribing). This behaviour is not specified by MQTT since every
message has its own QoS level but this allows simply setting a QoS to be used as default for
individual subscription topic messages.

uTasker_MQTT.doc/1.00 12/16 12/03/18

www.uTasker.com µTasker – MQTT

See the chapter on QoS for some examples of MQTT message exchanges with the three
levels (0, 1 and 2).

The application interface for publishing messages may look like this:

 unsigned char ucSubscriptionRef = 2; // send to subscription 2 topic
 if (fnPublishMQTT(ucSubscriptionRef, 0, -1) == 0) {
 fnDebugMsg("Publishing...");
 }
 else {
 fnDebugMsg("MQTT error!");
 }

In this example the message is sent to the topic that we are subscribed to at subscription
reference 2. Not topic needs to be passed in this case and the QoS used is the subscription's
default.

The MQTT application callback is used with the event number MQTT_PUBLISH_DATA (see
reference earlier on in the document) for the application to insert the appropriate content. It is
to be noted that a maximum of 1400 bytes may be inserted!

In order to sent a message to a non-subscribed topic the call may instead look like:

 if (fnPublishMQTT(0, “uTasker/test5”, 2) == 0) { // publish with QoS 2
 fnDebugMsg("Publishing...");
 }
 else {
 fnDebugMsg("MQTT error!");
 }

or

 if (fnPublishMQTT(0, 0, 1) == 0) { // publish with QoS 1
 fnDebugMsg("Publishing...");
 }
 else {
 fnDebugMsg("MQTT error!");
 }

whereby the publish topic can be inserted by the MQTT module calls back with the event
MQTT_PUBLISH_TOPIC.

Beware that publishing a message with an empty topic (length of zero) will tend to result in
the broker closing the connection to the devices. The command line interface will report an
error if this is attempted.

uTasker_MQTT.doc/1.00 13/16 12/03/18

www.uTasker.com µTasker – MQTT

4. Quality of Service (QoS)

The chapters discussing subscribing and publishing have shown how to control the QoS or
each exchange via the application interface. This section takes a brief look at the MQTT
operation at the three levels based on publishing a message, whereby the principle is similar
for subscribing and unsubscribing too. By using Wireshark it is easy to monitor the operation
and get familiar with the details involved.

4.1 QoS 0 (Fire and Forget)

The lowest level of QoS is 0, whereby messages are sent without requiring them to be
acknowledged. However this doesn't mean that the messages will often be lost due to the the
fact that they are being transported by TCP/IP where the delivery is more or less ensured as
long as the connection doesn't totally fail during the process.

This recording shows the MQTT protocol frame with the publish message whereby the TCP
protocol's ACK is displayed since there is no further activity at the MQTT level:

 In this mode one sees that the MQTT message was delivered to the destination but there is
no confirmation that it was actually processed by the MQTT level.

This level of quality is known as “Fire and Forget”.

The MQTT protocol level is shown as interpreted by Wireshark as follows:

Here we see that the QoS is signaled in the header flags which precede the topic and
message themselves.

uTasker_MQTT.doc/1.00 14/16 12/03/18

www.uTasker.com µTasker – MQTT

4.2 QoS 1 (Acknowledged Delivery)

The next level of QoS is 1, whereby messages are acknowledged also by the MQTT layer.

This recording shows the MQTT protocol (without TCP layer):

In this mode one sees that the MQTT message delivered is acknowledged by the receiving
the MQTT level.

The QoS 1 is seen in the header flags. In addition one notices that there is an additional
message identification filed that is used to ensure that the acknowledge belongs to the
published message; the ack message contains the same identifier value. This level
guarantees delivery at least once, but not that it can't be delivered a multiple number of
times.

uTasker_MQTT.doc/1.00 15/16 12/03/18

www.uTasker.com µTasker – MQTT

4.3 QoS 2 (Assured Delivery)

The highest level of QoS is 2, whereby messages are acknowledged by the MQTT layer in a
way that ensures that they are delievered only a single time..

This recording shows the MQTT protocol (without TCP layer):

In this mode one sees that there is a 4-way handshake involved whereby the broker informs
first that it has received the message, after which the client releases it, which the broker
confirms with a complete.

The publish message is the same as the QoS 1 message, with the QoS flags in the header
to to 2. The further messages are not particularly interesting apart from the fact that they all
need to contain the same message identifier value, which ensures that they indeed belong to
the correct one. Just the Publish Received message is shown to give an idea of its simplicity:

5. Conclusion

This document has given a brief introduction to MQTT (Message Queuing Telemetry
Transport) and explained how to configure the µTasker project to efficiently start working with
it.

The command line interface allows immediate testing of MQTT operations in combination
with a MQTT broker, such as the on-line Mosquitto one which is foreseen for such purposes.

Subscribing and unsubscribing to topics and publishing and receiving topic messages has
been demonstrated as well as how Quality of Service levels can be easily controlled.

As well as MQTT operation on the TCP port 1883 the µTasker project enables turn-key
secure MQTTS operation on TCP port 8883 using its secure (socket) layer option.

Modifications:

V1.00 12.03.2018: First version

uTasker_MQTT.doc/1.00 16/16 12/03/18

	1. Introduction
	2. Enabling MQTT
	3. MQTT Operation and Interface
	3.1 Connecting to/Disconnecting from the Broker
	3.2 Subscribing to/Unsubscribing from a Topic
	3.2 Messages and Receiving Published Messages

	4. Quality of Service (QoS)
	4.1 QoS 0 (Fire and Forget)
	4.2 QoS 1 (Acknowledged Delivery)
	4.3 QoS 2 (Assured Delivery)

	5. Conclusion

