

uTasker_RAM_test.doc/0.00 Copyright © 2011 M.J.Butcher Consulting

Embedding it better...

µTasker Document

µTasker – RAM Test

www.uTasker.com µTasker – RAM Test

uTasker_RAM_test.doc/0.00 2/7 30.07.2011

Table of Contents

1. Introduction ...3

2. Activating the RAM Test and Basic Test Properties ..3

3. Test Details with Handling of Stack Space Test ...4

4. Conclusion ..7

www.uTasker.com µTasker – RAM Test

uTasker_RAM_test.doc/0.00 3/7 30.07.2011

1. Introduction

It is sometimes required that the integrity of the system RAM (Random Access Memory) be
tested. This often takes place when the processor has just been reset but can also take
place at regular intervals during operation.

This document details the implementation of the RAM test in the µTasker project, which
allows the test of a complete RAM area, including all areas occupied by system variables,
heap and stack. The test code supports execution during system operation; the only
exception being when peripheral DMA access requires RAM access during the test, in which
case the peripheral’s operation would need to be temporarily suspended.

2. Activating the RAM Test and Basic Test Properties

The RAM test is incorporated in the file application.c and can be enabled by activating

#define RAM_TEST in that file.

The demo project calls the RAM task from the function fnUserHWInit(), which is executed

very early on in the initialisation sequence. This ensures that no peripheral DMA operation
takes place which may cause corruption during the test but it is performed with the system
already configured for it maximum operating speed.

It performs a complete test of all of the specified RAM area in one go, whereby the routines
used are also designed to allow the test to be performed in small blocks, allowing blocks to
be tested at regular intervals rather than all together.

During the test of each block of RAM interrupts are disabled to avoid interrupt routines using
the area that are presently being tested (in the demo project’s test there are no interrupt
actually enabled during the test period).

Since a backup is made of each block to be tested, the test doesn’t corrupt any system
memory. The test is also designed to allow testing of all RAM areas, including those
occupied by system stack and the test routine itself

The test call looks like this:

unsigned long *fnRAM_test(int iBlockNumber, int iBlockCount);

if (fnRAM_test(0, (SIZE_OF_RAM/RAM_BLOCK_SIZE)) !=

 (unsigned long *)0xffffffff) { // test code of a complete RAM area

 // The return address was the address in RAM that failed

 //

 while (1) {} // serious error found in RAM - stop here

}

The complete RAM (SIZE_OF_RAM) is tested in blocks of RAM_BLOCK_SIZE (eg. 128

bytes). It is expected that the test will usually be successful, in which case the value
0xffffffff is returned. Should a memory location fail, the returned pointer will point to

this long word location (0xffffffff was chosen since no known internal RAM occupies

this location).

www.uTasker.com µTasker – RAM Test

uTasker_RAM_test.doc/0.00 4/7 30.07.2011

3. Test Details with Handling of Stack Space Test

The RAM test of a single RAM block (example 128 bytes as defined by RAM_BLOCK_SIZE)

is performed by first making a backup of the content of the block to be tested on the system
stack.

Then the RAM test is performed on each long word location in the block – each location is
written with 0x55555555, tested for correctness, written with 0xaaaaaaaa and checked

again.

If an error is detected during the test the error location is remembered so that it can be
returned as result. The test is otherwise interrupted since an error has already been
identified.

Once the block test has completed the backup of the original content is returned.

This means that the RAM block’s content is not actually changed by the test; so that the
content cannot be used by other processes during the brief period where is has test content,
system interrupts are temporarily blocked.

Note that any peripheral DMA that could access the block would need to be specifically
stopped if the test were being performed at a time when it could otherwise result in a
possible corruption.

In order to test the complete RAM area the test is repeated for all blocks of RAM in it. For
example, a 96kByte internal SRAM would require the test of 768 blocks of each 128 bytes in
size.

This test is very simple as long as the test routine itself is not actually using the RAM which is
to be tested. This complication is overcome by always checking whether this is the case
before each block is tested and, in case there is a conflict, performing a recursive call to the
test routine in order to move the test routine’s stack space to another location in RAM. The
test routine requires a stack space of slightly more that the RAM block size (due to the fact
that it creates a backup buffer of that size on its stack), meaning that one or maximum two
recursive calls will be necessary to avoid the collision. Therefore it can be concluded that the
stack space required for the test is approximately maximum three times the
RAM_BLOCK_SIZE, which is also useful to be aware of in case the RAM_BLOCK_SIZE is to

be re-dimensioned. Larger block sizes require more stack space to be available; smaller
block sizes allow individual blocks to be tested faster, remembering that each block test will
also block interrupts during its execution period.

The operation, especially the recursive call of the routine to avoid stack collision and thus
allow the test of the entire RAM area during system operation, is represented in diagrams
below:

www.uTasker.com µTasker – RAM Test

uTasker_RAM_test.doc/0.00 5/7 30.07.2011

RAM area divided
in to test blocks (0..10)

0

1

2

3

4

5

6

7

8

9

10
Top of memory

Bottom of memory

Stack

Stack Pointer

System variables

The first diagram shows an area of RAM to be
tested. It is divided into a number of test blocks
(numbered 0..10). Test block 0 is at the bottom of
memory and test block 10 at the top.

Typically the lower portion of RAM will contain
system variables (and heap). The top of RAM will
usually be used as system stack, whereby the
stack grows downwards. The initial stack use and
the location of the stack pointer is shown before
the RAM test is called.

RAM area divided
in to test blocks (0..10)

0

1

2

3

4

5

6

7

8

9

10
Top of memory

Bottom of memory

Stack

Stack Pointer

System variables

Test routine stack

The second diagram shows the RAM utilisation
when the RAM test function has been called. The
function has created some space on the stack for
its working variables and a buffer large enough to
hold a backup of the block that will be tested.

The stack has thus grown down.

RAM area divided
in to test blocks (0..10)

0

1

2

3

4

5

6

7

8

9

10
Top of memory

Bottom of memory

Stack

Stack Pointer

System variables

Test routine stack
with block copy

Block being tested

Before the first block (test block 0) is tested a
backup of its original content is made on the RAM
test routine’s stack.

The test block 0 can then be temporarily modified
by the test routine to verify that all of its locations
write and read correctly.

After the block test has been completed the
backup can be returned so that the original
content is achieved again.

This can be repeated without difficulty for test
blocks 1, 2, 3 etc. up to 8.

www.uTasker.com µTasker – RAM Test

uTasker_RAM_test.doc/0.00 6/7 30.07.2011

RAM area divided
in to test blocks (0..10)

0

1

2

3

4

5

6

7

8

9

10
Top of memory

Bottom of memory

Stack

Stack Pointer

System variables

Test routine stack

Test routine stack 2

Test routine stack 3

When test block 9 is to be tested there is a
complication since this block is being used by the
RAM test routine. Since there is a collision it is not
possible to make a backup and test the block
without causing memory corruption to take place
and likely cause the processor to crash.

Therefore the RAM test routine is called a second
time (recursively) and creates a second stack for
its use (stack 2). In this case it is seen that the
second stack is lower in RAM but there is still
some overlap. A second recursive call results in
stack 3 being created which no longer overlaps
with the test block 9.

RAM area divided
in to test blocks (0..10)

0

1

2

3

4

5

6

7

8

9

10
Top of memory

Bottom of memory

Stack

Stack Pointer

System variables

Test routine stack

Test routine stack 2

Test routine stack 3

The second recursive instance of the RAM test
routine now performs the test of test block 9 by
first making a backup to its stack space (without
overlap).

Once test block 9 has been verified, its original
content (in this case containing the stacks of the
original test routine and the first recursive instance
of the routine) is returned to test block 9.

The result is that the complete RAM content after
the test is fully intact.

www.uTasker.com µTasker – RAM Test

uTasker_RAM_test.doc/0.00 7/7 30.07.2011

4. Conclusion

This document has detailed the operation of the RAM test included in the µTasker demo
project. The test is designed to test all locations in a RAM area even when the test program
is operating from stack within that area.

The test program is also designed to be able to be executed continuously during the
operation of a system in case this is a requirement by periodically calling the test of each
block within the RAM area.

It is to be noted that the stack should have adequate space to create three times the
RAM_BLOCK size during the test (when its stack is also in the area). Since interrupts are
blocked during each block test it tends to be beneficial to use small block sizes (128 bytes is
default).

In the case of peripheral DMA which may use the same RAM area during the test, the
peripheral should also be disabled during the test.

Modifications:

V1.00 30.07.2011 - Initial version

