
Hi Mark,

I applied your modifications and it has improved things, I seem to be reading the correct number of bytes now, but I’m
still got the following problems.

1. Single byte reads are still broken.
2. Reads of the PCF8575 chip, triggered from another task cause the IIC bus to lock up.

My start up routine looks like this

static const unsigned char IIC_WrTC665_FanSlow[] = {0x36, 0x06, 0x00}; // {address, register, data}
static const unsigned char IIC_WrTC665_FanFast[] = {0x36, 0x06, 0x0f}; // {address, register, data}
static const unsigned char IIC_WrTC665_FanSpeed[] = {0x36, 0x07}; // {address, register, data}
static const unsigned char IIC_RdTC665_FanSpeed[] = {2, 0x37, OWN_TASK}; // {address, register, data}
static const unsigned char IIC_Rd8575[] = {2, 0x41, OWN_TASK}; // {bytes, address, TASK_TO_WAKE}
static const unsigned char IIC_Rd8575_1[] = {1, 0x41, OWN_TASK}; // {bytes, address, TASK_TO_WAKE}

static void fnConfigIIC_Interface(void)
{
 IICTABLE tIICParameters;

 tIICParameters.Channel = 0;
 tIICParameters.usSpeed = 100; // 100k
 tIICParameters.Rx_tx_sizes.TxQueueSize = 128; // transmit queue size
 tIICParameters.Rx_tx_sizes.RxQueueSize = 128; // receive queue size
 tIICParameters.Task_to_wake = 0; // no wake on transmission

 if ((IICPortID = fnOpen(TYPE_IIC, FOR_I_O, &tIICParameters)) !=0) { // open the channel with defined configurations
 fnWrite(IICPortID, (unsigned char *)&IIC_WrTC665_FanSlow, sizeof(IIC_WrTC665_FanSlow)); // set the fan speed
// fnRead(IICPortID, (unsigned char *)&IIC_Rd8575_1, 0); // start the read process of 16 bytes
 fnRead(IICPortID, (unsigned char *)&IIC_Rd8575, 0); // start the read process of 2 bytes
 fnWrite(IICPortID, (unsigned char *)&IIC_WrTC665_FanSlow, sizeof(IIC_WrTC665_FanSlow)); // set the fan speed
 fnRead(IICPortID, (unsigned char *)&IIC_Rd8575, 0); // start the read process of 2 bytes
 fnRead(IICPortID, (unsigned char *)&IIC_Rd8575, 0); // start the read process of 2 bytes
 }
}

I’ve just got repeated reads in there for testing, with the above I get the following Logic trace, which is what I expect.

If uncomment the line // fnRead(IICPortID, (unsigned char *)&IIC_Rd8575_1, 0); // start the read
process of 16 bytes I get the following logic trace, which seems to lock up at the point a single byte read is
performed.

Now ignoring single byte reads, because I don’t need them I can do two byte reads and ignore the second byte. I still
have problems. It seems I can put as many reads of address 0x20 as I want (which is my PCF8575 I/O chip) in the start
up routine. Elsewhere in my code I have a task which looks at two switches and will either write an IIC message to
speed up the fan or read the PCF8575. Writing to the fan works fine, but as soon as I press the switch that triggers a
PCF8575 read I get the following on the bus and the IIC is locked up.

